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Abstract. In this paper, we present two video-based event detection systems 
developed by City College of New York (CCNY) for the Surveillance Event 
Detection (SED) task of TRECVID 2014. One is a generic event detection 
system that is applied to all the events of the SED task except CellToEar event. 
In this proposed system, the detection unit is differentiated by a sliding 
temporal window and a set of spatio-temporal features including STIP-
HOG/HOF, DT-Trajectory, and DT-MBH. Fisher Vector is adopted to encode 
low-level features as the representation of each sliding window. Since the 
surveillance data is highly imbalanced, we chop the training data into balanced 
small chunks, and within each data chunk a random forest classifier is learned. 
In the testing phase, decision-level fusion is applied to combine the prediction 
results by multiple random forests. The second system is specifically designed 
to the CellToEar event since it has distinct properties which are unsuited for 
traditional action based approaches but well compatible with the static gesture 
detections. 

1.   Introduction 

Event detection aims at recognizing and localizing specified spatio-temporal 
patterns in videos [1]. There has been a demanding need for the automatic event 
detection of event surveillance for security and safety concerns, both within home 
area and public regions such as airports, supermarkets, and commercial establishment. 
Research of human action recognition in the past decades mainly experiments on 
controlled environment with clear background where explicit actions are performed 
with limited actors. However, in real-world surveillance videos, due to challenges of 
large variances of viewpoint, scaling, lighting, cluttered background, the ideal 
situation seldom holds. To bridge research efforts and real-world applications, 
TRECVID [2] sets the Surveillance Event Detection (SED) task to evaluate event 
detection in real-world surveillance settings. In TRECVID 2014 [17], SED provides a 
corpus with 144-hour videos from the London Gatwick International Airport under 
five camera views. In this dataset, 99-hour videos can be used as the development set 
with annotations of temporal extents and event labels. We design two event detection 
systems: a specific system for CellToEar and a generic system for all the rest events, 
i.e., Embrace, ObjectPut, PeopleMeet, PeopleSplitUp, PersonRuns, and Pointing. 

The rest of this paper is organized as follows. Section 2 introduces our generic 
event detection system which includes low-level feature extraction, video 
representation, the random forests classification, and post processing. In Section 3, we 



provide the detailed descriptions regarding the CellToEar task-specific system. 
Experimental results and discussions are presented in Section 4. Section 5 
summarizes the remarks of our systems. 

2.   Generic Event Detection System 

In this section, we present the generic event detection system which is applied to 
events: Embrace, ObjectPut, PeopleMeet, PeopleSplitUp, PersonRuns, and Pointing.  

2.1.   System Overview 

As demonstrated in Fig. 1, our system is consisted of three major components: (1) 
low-level feature extraction, (2) video (sliding window) representation based on 
Fisher Vector, and (3) event learning and prediction by Random Forests. 
 

 
 

Figure 1: Overview of the CCNY generic surveillance event detection system. 
 

Local spatio-temporal features have been demonstrated to be more robust to 
posture, occlusion, illumination, and cluttered background compared to global 
features. Detection and description are two phases in the spatio-temporal feature 
extraction process. A feature detector localizes interest points in a spatio-temporal 
space while a feature descriptor computes representations of detected points. 

In the generic framework, we use the same low-level features as our previous 
system [3, 16] which are STIP-HOG/HOF, DT-Trajectory, and DT-MBH. In events 
PersonRuns and Embrace, all three features are employed to characterize human 



actions. Due to shortage of time, for the rest four events, only STIP-HOG/HOF and 
DT-Trajectory are extracted. 

Feature encoding is commonly used to aggregate the low-level features to represent 
images and videos. The superiority of Fisher Vector has been demonstrated in the 
evaluation of recent feature encoding methods [4]. In this paper, Fisher Vector with 
spatial pyramids [5] are adopted to encode local spatio-temporal features. To 
decorrelate data and reduce the computational burden and memory consumption, we 
apply PCA for the dimensionality reduction by half over STIP-HOG/HOF and DT-
MBH before Fisher Vector representation. 

With the above video representations, the event models can be learned by Random 
Forests [6]. However, the surveillance data is highly imbalanced because positive 
events are far less frequent than negative ones (refer to Table 1 for details). Therefore, 
in the offline learning phase, the imbalanced data is chopped into smaller chunks 
which are relatively more balanced. A Random Forest classifier is learned for each 
data chunk. A simple post processing is performed as to combine all the prediction 
results by multiple Random Forests in the online detection process.  

2.2.   Low-Level Feature Extraction 

  Similar to our previous framework [3], we extract three types of low-level features 
including STIP-HOG/HOF, DT-Trajectory, and DT-MBH. In this subsection we 
briefly introduce the three features respectively. Please refer to [3] for more detailed 
description. 
  Space-Time Interest Point (STIP) [7] employs 3D Harris corner detector to detect 
sparse points with large gradient magnitude in both spatial and temporal domains. 
Histogram of Gradients (HOG) and Histogram of Optical Flow (HOF) are then 
computed and concatenated as descriptors based on the space-time neighborhoods of 
detected interest points to capture the local appearance and motion information.  
  STIP detector combined with HOG/HOF descriptors has been widely used in action 
recognition and detection tasks [8]. However, it is restrictive to have large intensity 
changes in both spatial and temporal dimensions. On the other hand, Dense 
Trajectories (DT) [9] provides an alternative to the joint space-time based interest 
point detectors. It densely samples interest points at multiple spatial scales. Then the 
sampled interest points are tracked over a dense optical flow field and reinitialized 
every few frames. Two local descriptors, Trajectory and Motion Boundary Histogram 
(MBH) are then extracted from the space-time volumes aligned with the trajectories.  
DT-Trajectory characterizes the shape of a trajectory that is used to capture local 
motion cues. For DT-MBH, the space-time volume aligned with a trajectory is used to 
extract local descriptors.  

2.3.   Video Representation 

After extracting the low-level features, we perform PCA to reduce the feature 
dimensions of STIP-HOG/HOF and DT-MBH by half. Then Fisher Vector [10] 
combined with spatial pyramids [5] are employed to represent each sliding window. 
Fisher Vector describes each feature descriptor by its deviation with the respect to the 
parameters of a generative model and provides a feature aggregation scheme based on 



Fisher kernel that shares the benefits of both generative and discriminative models. 
Then the spatial pyramids are employed to roughly incorporate the spatial layout of 
the video scene.  

2.3.1.   Fisher Vector  

The Gaussian mixture model (GMM) ��(�) = ∑ ����(�)
�
���  is adopted as the 

generative model for the Fisher Vector in which ��  denotes the � th Gaussian 
component: 
 

��(�) =
1

2�
�
�|��|

�
�

exp �−
1

2
	(� − ��)

�	��
��	(� − ��)�	,	 

 

∀� ∶ �� ≥ 0, ∑ ��
�
��� = 1	,  

(1) 

 
where � ∈ ℝ�  represents the feature descriptor; �  is the number of Gaussian 
components; �� , �� , and ��  stand for the mixture weight, mean vector, and 
covariance matrix, respectively. The covariance matrix �� is assumed to be diagonal 
with the variance vector ��

�. We use the Expectation-Maximization (EM) algorithm 
to optimize Maximum Likelihood (ML) to estimate the GMM parameters � =
{��, ��, ��, � = 1, … , �} based upon a large set of training descriptors. 

Let � = {��, … , ��} denote a set of descriptors extracted from a sliding window. 
The soft assignment of descriptor �� with respect to �th component is defined as: 

 

��
� =

����(��)

∑ ����(��)
�
���

	. (2) 

 
Then the Fisher Vector of � is represented as �(�) = {��, ��, … , ��, ��}, where 

��  and ��  are � -dimensional gradients with respect to mean vector ��  and 
standard deviation �� of component �: 
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This system follows the scheme introduced in [10] to normalize Fisher Vector, i.e., 

firstly the power normalization and then L2 normalization. Please refer to [3] for the 
detailed description and parameter settings.   

2.3.2.   Spatial Pyramid 

We spatially subdivide a video scene into a set of regions where low-level 
descriptors are pooled. To be more specific, the generic system adopts the three level 



spatial pyramids [5] which are 1×1, 3×1, and 2×2 grids. For each grid, the Fisher 
Vector is computed and concatenated as the video representation. 

2.4.   Model Learning and Post Processing 

  In the generic framework, we adopt a 60-frame sliding window size that strides in 
every 15 frames. This sliding window scheme generates highly imbalanced data. As 
shown in Table 1, among all the evaluated events, even the most frequent event 
PeopleSplitUp only covers 4.37% of the entire video sequences.  
 

Table 1: Proportions of video sequences containing positive events in the training set. 
 

CellToEar PersonRuns ObjectPut Embrace Pointing PeopleMeet PeopleSplitUp 

0.31% 0.60% 0.89% 1.51% 1.70% 3.58% 4.37% 

 
    The camera and event dependent models are learned to reduce intra-class 
variance and memory consumption in training phase. Therefore in our generic system, 
we train a group of Random Forests [6] for each of the six events under each camera 
view. In order to handle the imbalanced data and make full usage of the valuable 
positive data, we propose the following data segmentation scheme as illustrated in 
Fig. 2. For event � under camera view �, we denote the training set to be ��� =

{���
�, ���

�}. We use notation � = {��, ��} in later context for simplicity. The 

negative data set is divided into a series of partitions ��
�, � = 1,… , � with triple size 

of |��|. The whole training set is chopped into a group of data chunks where each 
data chuck is consisted of a portion of the negative samples and the whole positive 
set. Within each data chunk, a Random Forest is trained with 30 decision trees and the 
maximum depth for each tree is set to be 8.  
 

 
 

Figure 2: Illustration of data segmentation where within each data chunk a Random Forest is 
learned. 
 

For a testing video, two or three low-level features are extracted from each sliding 
window. Each low-level feature generates a corresponding Fisher Vector. As shown 
in Fig. 3, each Fisher Vector is fed into a group of learned Random Forests and we 
perform the decision-level fusion after the classification. The decision-level fusion 



combines outputs of multiple classifiers to make the final prediction. Minimum, 
maximum, median, majority voting, weighted sum, and geometric mean are all 
popular decision-level fusion methods [11]. Weighted sum is employed for late fusion 
in our generic system. 
 

 
 

Figure 3: Illustration of late fusion in combining multiple low-level features. 
 

An event might span several different windows due to the sliding window scheme 
adopted in our system. Therefore, after the classifier prediction, we employ a 
straightforward post processing to group continuous positive windows as to decide the 
final temporal interval of a detected event. In the post process, two positive 
predictions which have overlaps in their sliding windows can be merged together.  

3.   CellToEar Task Specific System 

3.1.   Motivation 

  Since the CellToEar task is commonly considered as the most difficult event 
among all the tasks as it has distinct properties and relatively less occurrences and 
more outliers, we design a different specific framework to solve this problem. 
  The conventional event detection methods often extract the low-level features in 
the temporal sliding windows first, and then design descriptors by encoding these 
features, finally determine the correct action with trained classifiers. The commonly 
used low-level features are generally categorized as global and local representations 
[12], both of which do not perform well enough on CellToEar task. 

Recently numerous top-performance action recognition and event detection 
methods rely on the above framework and effectively solve large scale SED tasks, 
e.g., PersonRuns, Embrace and PeopleSplitUp. However, the performance is limited 
on small scale events including CellToEar and Pointing. For example, the Actual 
Detection Cost Rate (ADCR) of the best result for event PeopleSplitUp and the 
second best result for CellToEar task are 0.7781 and 0.9908 respectively in 2013, 
which means the latter one almost cannot produce any effective output in real world 
tasks. 



Given the limitations of general event detection methods on small scale event 
detections, [12] attempts to introduce the mid-level discriminative representation to 
enhance the detection performance on CellToEar task, which obviously outperforms 
all other detection methods and achieve the best performance on CellToEar task (with 
ADCR = 0.9057) in 2013. Instead of relying on the video fragments containing the 
whole scene as the conventional methods, they train classifiers on mid-level 
discriminative patches and shots which are more intuitive to users compared with the 
abstract low-level features and better describe the patterns of interested events. The 
underlying patches which contain the target events are then sorted based on the 
classifier scores. 

The methods of [12] reply more on the post-processing of human interaction. In our 
CellToEar task specific system, we focus on automatic detection and classification. 
We introduce more upper body properties and static features to enhance the 
performance. 
 

 
 

(a) Original CellToEar event scenes.  
 

 
 

(b) Initial detection bounding boxes including part models. 
 

 
 

(c) Finalized detection bounding box. 
 

Figure 4: Gesture detection for CellToEar task. (a) The original CellToEar event scenes. (b) 
The CellToEar specific Deformable Part Models (C-DPM) detection results (red bounding box) 
with part models (blue bounding boxes). (c) The final prediction bounding box determined by 
the initial detection results. 



 

 
 

Figure 5: User interface of training data annotation. 
 

3.2.   CellToEar Gesture Detector 

  Here we identify the three properties of CellToEar event: 
 

 generally lasts for a very short time, which can be well represented by several 

specific keyframes. 

 usually occurs in a very local location with respect to the human body, which 

can be well described by part-based descriptors. 

 often consists of a short-time arm waving and a long-time static calling 

gesture (even when the caller is moving). 

Based upon these specific properties, we implement our CellToEar Gesture 
Detector based on the top-performance discriminatively trained deformed part-based 
models [13]. Part-based model has been successfully used in many object detection 
and recognition areas and achieves state-of-the-art results on the PASCAL VOC 
benchmarks [14] and INRIA Person dataset [15]. It represents highly variable objects 
using mixtures of multi-scale deformable part models. These models are trained using 
a discriminative procedure which only requires the annotation bounding boxes for the 
objects. 

The deformable part models (DPM) are highly compatible with CellToEar task due 
to the following reasons: 1) DPM builds on a pictorial structures framework, which 
represents objects by a bunch of parts arranged in a deformable configuration. The 



visual model provides an intuitive guidance for parameter tuning. 2) DPM can well 
handle the variations of human pose and appearance in the cluttered environment (as 
illustrated in Fig. 6.) since it relies on expressively enough mixtures models. 3) DPM 
can significantly reduce the difficulty of training process while boosting the efficiency 
as it introduces the part based latent (hidden, as the part locations have not been 
labeled) variables during training. 

To make the DPM more effective in solving the specific CellToEar problems, we 
add more distinct features to distinguish the arm waving and calling gesture with 
other upper body gestures such as pointing, hand shaking and object put. The 
experiment results demonstrate the effectiveness of our method.  

3.3.   Details of Implementation 

To obtain high performance using discriminative training methods, it is often 
crucial to use large training data sets. The whole TRECVID SED dataset contains 
approximately 100-hour videos as training data and 45-hour videos as evaluation data. 
We manually annotate all the bounding boxes for all the CellToEar events in the 
training videos based on the provided Ground Truth (time spanning). These labeled 
data are considered weakly labeled since the bounding boxes do not specify part 
locations or component labels. Fig. 5 indicates the graphical user interface which is 
used to label the training data. 

After we learn all the parameters of target mixture models in DPM by constructing 
a latent SVM (LSVM), we carefully tune the parameters and number of part models 
to achieve the best performance since in CellToEar event the arm gesture is the 
unique property which shows the distinction with other gestures. Trained visual 
models are shown in Fig. 6. In the labeling process, we noticed that several 
unexpected Ground Truth video clips which actually do not contain any underlying 
CellToEar events at all. In this case we manually filter out those false Ground Truth 
clips. From the visual model we could intuitively figure out the general appearance of 
arm waving and phone handling gestures. 
 

 
 

Figure 6: Trained visual DPM models for CellToEar event. 
 



4.   Experimental Results 

All videos provided by TRECVID SED 2014 are captured by 5 fixed cameras with 
the frame resolution 720×576 at 25fps. In the generic system, the experiments 
reported in this paper are performed on an Intel Xeon computation server that 
comprises 24 cores (2.0GHz), 256GB memory, and 12TB hard disk. We downsample 
all videos to half of the original size for the low-level feature extraction process. After 
performing PCA to further reduce the feature dimension of STIP and DT-MBH by 
half, we train the GMM with 128 Gaussian components and adopt the 8-grid spatial 
pyramid in this system. Therefore, the dimensions of Fisher Vectors are 165888, 
61440, and 196608 for STIP, DT-Trajectory, and DT-MBH, respectively.  

In the CellToEar specific system, the experiments are performed in the same server. 
The training time for CellToEar specific model is about 10 hours on a 2.3 GHz 8-core 
and 48 GB ram Intel Xeon Computer. The detection framework works by traversing 
all the testing videos by performing detection every five frames. The detection 
process takes six to seven seconds each frame. After capturing all the detection 
scores, we firstly concatenate continuous underlying frames based on the time stamp 
(simultaneously average the scores), and then sort all the time spans based on the 
detection scores.  

As shown in Table 2, we compare our systems to other participant systems in 
TRECVID 2014 in the primary metric Actual Detection Cost Rate (ADCR) and the 
secondary metric Minimum Detection Cost Rate (MDCR). The rank column denotes 
our rankings among all participants in terms of ADCR. Our system achieves the best 
performance in event PersonRuns and the second place in event PeopleSplitUp. The 
detailed performances of our system on all the events are shown in Fig. 7. 
 

Table 2: Comparison of our system and other best systems in TRECVID SED 2014. 
 

Event Rank 
ADCR of Other 

Best Systems 
CCNY Primary Run 

ADCR MDCR #CorDet #FA #Miss 
CellToEar 3 0.9921 1.0257 1.0005 0 56 54 
Embrace 4 0.8113 0.9611 0.9510 14 136 124 
ObjectPut 3 0.9713 1.0177 1.0005 1 46 289 

PeopleMeet 3 0.8587 0.9966 0.9901 11 86 245 
PeopleSplitUp 2 0.8353 0.8698 0.8594 36 232 116 

PersonRuns 1 0.8301 0.8256 0.8122 13 175 38 
Pointing 4 0.9998 1.0547 1.0005 19 171 776 

 

5.   Conclusion 

In this paper we have presented the detailed implementation of two SED systems 
participated in TRECVID 2014. The task specific system is applied to event 
CellToEar and the generic system is evaluated in all the rest six events. The generic 
system firstly extracts low-level features of STIP-HOG/HOF, DT-Trajectory, and DT-
MBH from each sliding window. Fisher Vector is then employed to aggregate the 
low-level features. A group of Random Forests is utilized to learn the detection 



models corresponding to the each specific event and camera view. We have further 
applied the decision-level fusions to capture the detection results. In CellToEar task, 
we have employed the top-performance deformable part models while integrating 
more specific features and prior knowledge to represent the distinct arm waving and 
phone handling gestures and achieved comparable performance. In the evaluations of 
7 event detection tasks, our system achieves top 3 performances in 5 events. 
 

 
 

Figure 7: Detection Error Tradeoff (DET) curves of each event. 
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