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Abstract

In this paper we summarize our TRECVID 2014 [12] video
retrieval experiments. The MediaMill team participated in
five tasks: concept detection, object localization, instance
search, event recognition and recounting. We experimented
with concept detection using deep learning and color differ-
ence coding [17], object localization using FLAIR [23], in-
stance search by one example [19], event recognition based
on VideoStory [4], and event recounting using COSTA
[10]. Our experiments focus on establishing the video re-
trieval value of these innovations. The 2014 edition of the
TRECVID benchmark has again been a fruitful participa-
tion for the MediaMill team, resulting in the best result for
concept detection and object localization.

1 Task I: Concept Detection

Last year we introduced deep convolutional neural networks
for video concept detection and localization, and demon-
strated their complementary power when used with Fisher
vectorized bag-of-words [17]. This year we included sev-
eral tangential improvements for concept detection, includ-
ing coordinate coding in bag-of-words, pre-training on Ima-
geNet objects, and the use of fully connected output layers
as SVM features. Since deep learning is critically dependent
on labeled examples and suffers from noisy and incomplete
annotations, as common in TRECVID [2, 16], we manually
extended the collaborative annotations.

Color Difference Coding Our baseline concept detection
system uses a bag-of-words with color point descriptors only.
For point sampling we rely on dense sampling, with an in-
terval distance of six pixels and sampled at multiple scales.
We used a spatial pyramid of 1x1 and 1x3 regions in our
experiments. We used a mixture of SIFT, TSIFT, and C-
SIFT descriptors [22]. We compute the descriptors around
points obtained from dense sampling, and reduce the di-
mensionality with principal component analysis. We en-
code the color descriptors with the aid of difference coding

using Fisher vectors with a Gaussian Mixture Model code-
book [13]. We encode spatial information into the Fisher
vector akin to [15]. For efficient storage we perform prod-
uct quantization [6] on the features. The classifier is a linear
SVM, which we apply on the keyframe and six additional
frames per shot, we take the maximum response as the score
per shot.

Convolutional Neural Network Our deep learning con-
cept detection system is a convolutional neural network with
eight layers with weights [24]. The input is raw pixel data,
the output are concept scores. The network is trained using
error back propagation. However, in contrast to ImageNet,
there are too few labeled examples in the TRECVID SIN
2014 set for deep learning to be effective. We studied how
additional examples for 15K objects from ImageNet [14] can
be exploited to better train our networks. To improve the
results, we took a network that had already been trained on
ImageNet and re-trained it for the 60 TRECVID 2014 SIN
concepts. We train a network and apply it on the keyframe
and six additional frames per shot, we take the maximum
response as the score per shot. We repeat this for a total of
eight networks and average the scores per shot.

1.1 Submitted Runs

We submitted four runs in the regular SIN task. We sum-
marize our regular SIN task submission in Figure 1.

Cersei is our baseline run. It is based on eight deep CNN
networks, pretrained on ImageNet and tuned for the SIN
task concepts. It achieves an mAP of 0.318 and is the best
performer for 1 out of 30 concepts. This run came out third
in terms of overall system performance.

Tyrion is our first hybrid system that fuses deep learning
and color difference coding by a simple weighted average ob-
tained by cross-validation. It combines our best single deep
CNN network with color difference coding using Fisher vec-
tors and a spatially improved color difference coding using
Fisher vectors. It achieves an mAP of 0.316 and is the best
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Figure 1: Comparison of MediaMill video concept detection experiments with other concept detection approaches in the TRECVID 2014

Semantic Indexing task.

performer for 2 out of 30 concepts. This run came out fourth
in terms of overall system performance.

Jaime is our second hybrid system that fuses deep learning
and color difference coding by a simple weighted average ob-
tained by cross-validation. It combines the Cersie baseline
run with color difference coding using Fisher vectors and a
spatially improved version thereof. It achieves an mAP of
0.331 and is the best performer for 11 out of 30 concepts.
This run came out second in terms of overall system perfor-
mance.

Tywin is our third hybrid system that combines all com-
ponents from the above runs. It achieves an mAP of 0.332
and is the best performer for 9 out of 30 concepts. This run
came out as the system with best overall performance in the
SIN task of TRECVID 2014.

2 Task II: Object Localization

We perceive object localization in video as a supervised
learning problem. So we require bounding box annotations
for objects of interest. We have refined a subset of the global
image annotations for 10 (global) concepts to object-level by
adding their bounding boxes. A major computational bot-
tleneck in many current localization algorithms is the evalu-
ation of arbitrary boxes. Dense local analysis and powerful
bag-of-word encodings, such as Fisher vectors and VLAD,

lead to improved accuracy at the expense of increased com-
putation time. Where a simplification in the representation
is tempting, we prefer our recently proposed FLAIR - Fast
Local Area Independent Representation [23], which reduces
computation time while maintaining accuracy.

Fisher with FLAIR By representing the picture as sparse
integral images, one per codeword, FLAIR allows for very
fast evaluation of any box encoding and still enables spatial
pooling. In FLAIR we achieve exact Fisher vector coding,
even with l2 and power-norms. Finally, by multiple code-
word assignments, we achieve exact and approximate Fisher
vectors with FLAIR. The results are a 18x speedup, which
we leverage to perform video concept localization. Given a
ranking of a video collection provided by our concept de-
tection runs, we start from state-of-the-art fast selective
search [21] to generate object proposals for each of the pro-
vide iframes. As descriptor for each image we use dense
SIFT, OpponentSIFT and C-SIFT [22], sampled at every
2 pixels at 3 scales. The dimensionality of each descriptor
is reduced to D = 80 with PCA. We employ Fisher with
FLAIR using a codebook of size K = 256. Because evaluat-
ing multiple boxes is computationally cheap in FLAIR, we
use a spatial pyramid with 30 cells (1x1, 2x2, 3x3 and 4x4).
For each object we train a linear SVM classifier, where the
positive examples come from our ground truth annotations.
We follow a hard negative mining protocol as is common in
the literature [23].



2.1 Submitted Runs

For each of the four submitted runs in the concept detec-
tion task we analyzed the top-1,000 shots using Fisher with
FLAIR. We observe that Cersei with FLAIR provides us
with the best results for all the provided metrics, indicating
it is best to use an initial ranking provided by deep con-
volutional networks, before employing Fisher vectors with
FLAIR. This run came out as the system with best over-
all performance in the SIN localization task of TRECVID
2014.

3 Task III: Instance Search

Our instance search system is built upon the recent ad-
vances in the literature. We use three interest point detec-
tors, MSER, Harris-Affine and Hessian-Affine, and two local
descriptors, RootSIFT [1] and a SIFT descriptor combined
with a 64-dimensional color feature. We employ VLAD en-
coding [7] with a large vocabulary containing 20,000 visual
words. Normalization per visual word is applied to tackle
burstiness [20]. Exponential similarity proposed by Tao et
al . [19] is used to compute the similarity of two frames on
each visual word. The exponential similarity puts dispro-
portional high weights on close matches in the feature space,
which is advantageous for instance search.

3.1 Submitted Runs

We participated in two subtasks, using example one only
and using all four examples. We submitted three runs for
each subtask. The difference among the three runs lies in
how the query examples are used.

Run1 In this run, we only consider the foreground region
of the query. This run achieves an mAP of 0.125 in the
one-example case, and 0.227 in the four-example case.

Run2 This run uses the entire query image, scoring 0.106
and 0.161 respectively in the one-example subtask and the
four-examples subtask.

Run3 This run fuses the results of the above two runs.
The performance is 0.133 and 0.221 respectively.

4 Task IV: Event Recognition

Our event recognition system is founded on our recently
proposed VideoStory [4] embedding. Rather than relying on
predefined concept detectors, and annotations, for the video
representation [5, 8, 9], VideoStory learns a representation
from web-harvested video clips and their descriptions.

VideoStory embedding We modeled the representation
learning as a multi-step embedding process, where the high-
dimensional raw pixel values from the video are embedded
into low-dimensional semantic features. Our VideoStory
embedding process is made of two consecutive steps: a pixel
to feature embedding, where the frame pixels [18] are pro-
jected into a non-semantic feature space by applying a deep
CNN, which is pre-trained on the ImageNet data. We feed
the video frames into the deep CNN and take the responses
from the middle layers as features. We experimentally se-
lected the layers which generate more effective features and
used them for the second step of generating the meta-data.
In our submissions, we use the responses from the second
fully connected layer.
Although the extracted features can be used to train event

classifiers directly, we keep on embedding them into a lower
dimensional and more semantic feature space. We follow
three goals in performing this second step embedding: first,
to make the features semantically interpretable, which is
desired for recounting purposes. Second, to reduce the fea-
tures size, which makes the event training and detection
even more efficient. Third, to transfer some prior informa-
tion relevant to the event to generate more effective features.
For this purpose, we apply VideoStory embedding [4], which
learns to embed video features into their semantic descrip-
tion. We train VideoStory on a collection of 46K YouTube
videos and their titles, provided by [4]. We use the same
VideoStory embedding for the 0ex, 10ex, and 100ex subm-
mission.
In addition, within the SESAME team [3, 11], we also

investigate together with SRI International and the Univer-
sity of Southern California several additional multimedia
approaches to video event detection.

4.1 Submitted Runs

Pre-Specified In our pre-specified run we score 3.6 mAP
for Semantic Query without examples, 14.9 mAP when us-
ing 10 examples to train events, and 24.1 mAP when using
100 examples. Note that we use a single visual feature.

AdHoc In our adhoc run we score 1.8 mAP for Semantic
Query without examples, 9.0 mAP when using 10 examples
to train events, and 18.6 mAP when using 100 examples.
Note that we use a single visual feature.

5 Task V: Event Recounting

The goal of event recounting is to provide key evidence to
semantically explain the MED classification. This key evi-
dence consists of a number of video snippets with the cor-
responding semantic concepts detected in these snippets.
Each piece of evidence is further supplemented with a con-
fidence score of the observed concepts.
The MediaMill MER submission is built upon the 15K

concept scores provided by the CNN outlined in Section 1.



As a result, the submission is focused on visual evidence
of concepts and their temporal locations. To limit the in-
fluence of the large number of irrelevant concepts, we au-
tomatically subselect a limited number of concepts using a
ranking approach inspired by COSTA [10].

To yield the temporally localized evidence, we split each
video into a number of segments. During training, we dis-
cover the most informative segments from the ten provided
positive videos. These parts are matched with the segments
of a test video and the top-ranked matches are presented as
the key visual evidence. Exactly how many pieces of evi-
dence are chosen is a function of the video length. For each
piece of evidence, the highest scoring concepts are used as
the semantic recounting.

5.1 Submitted Run

The MER evaluation consists of three criteria: the percent-
age of the video used in the recounting, the conciseness of
the recounting, and how convincing the presented key evi-
dence is. The first criterion measures the brevity of the ev-
idence, and the second evaluates how well the selected con-
cepts represent the event. Finally, the third criterion states
how well the key evidence demonstrates that the video con-
tains the event. In the MediaMill system, on average 15.4%
of the video was used as key evidence. Furthermore, for
55.0% of the recountings, the key evidence was deemed con-
vincing by the judges.
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[2] S. Ayache and G. Quénot. Video corpus annotation using
active learning. In ECIR, 2008.

[3] R. C. Bolles, J. B. Burns, J. A. Herson, G. K. Myers, J. van
Hout, W. Wang, J. Wong, E. Yeh, A. Habibian, D. C.
Koelma, T. Mensink, A. W. M. Smeulders, C. G. M. Snoek,
R. Kovvuri, A. Aggarwal, K. Chen, P. Sharma, S. Cao, and
R. Nevatia. The 2014 SESAME multimedia event detection
and recounting system. In TRECVID, 2014.

[4] A. Habibian, T. Mensink, and C. G. M. Snoek. Videostory:
A new multimedia embedding for few-example recognition
and translation of events. In MM, 2014.

[5] A. Habibian and C. G. M. Snoek. Recommendations for
recognizing video events by concept vocabularies. CVIU,
124:110–122, 2014.

[6] H. Jégou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. TPAMI, 33(1):117–128, 2011.

[7] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating
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