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Abstract. National Institute of Informatics (NII) participated in two
tasks: Instance Search (INS) and Multimedia Event Detection (MED). In
the first part, we describe our Instance Search system that achieved best
performance in this year’s evaluation. In the second part, we describe
our Multimedia Event Detection system along with some technical im-
provements for MED.
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Abstract. We report the two Visual Instance Search Systems
in TRECVID 2014. The first system is based on our system last year
and is improved by using a new spatial consistency enforcement method.
Firstly, top10K shots are returned by the baseline BoW system. Next,
the DPM-based object localizer trained on query image regions is used
to apply on these top10K shots to detect possible locations of the target
object. In addition, RANSAC is also used to check spatial consistency
between matches of the query images and representative keyframes of
the shots. Finally, the final score of these shots is computed by fusing
the scores of BoW, DPM, and RANSAC. The key idea of our proposal
is to design a flexible scoring scheme to prioritize shots whose matched
regions by RANSAC and DPM are more consistent. Since RANSAC is
point-based and DPM is region-based spatial consistency verification,
they are complementary each other. As a result, many false positives
are removed, leading to better precision. Meanwhile, BoW-based top10K
guarantees reasonable recall. Using this new spatial consistency enforce-
ment method, the performance is improved 128.8%.
The second system is based on the state of the art BoW model and use
video for query expansion. The experiments show minor improvement
compared to the baseline.

1 Visual Instance Search Framework Using DPM-based
Object Localizer for Enhancing Spatial Consistency
Enforcement

Our Instance Search system is designed following the guideline provided by
TRECVID [1]. For our this year system, we propose a new method of post



processing to deal with texture-less and feature-less query objects. Most state-
of-the-art systems last year using Bag-of-Word (BOW) model [2] combined with
RootSIFT [3], an extended version of SIFT[4]. The main contribution of our
team last year is to propose a new query adaptive asymmetric dissimilarity to
handle problem of query-image relation: the query object is mostly included in
the database image, while the converse is not necessarily true. We also combined
many feature detectors and descriptors but the system improve performance not
very much, as special for texture-less object such as logos, small objects. Because
we use different features with the same model to represent image, they are not
complementary together. This year, we propose a new region of interest based
reranking method using BOW model and object detection algorithm.

Specifically, our the BOW baseline has the following settings. For the local
feature extraction, we use hessian-affine detector [5] and RootSIFT descriptor[3].
These features are sampled and clustered to a one million-sized codebook. For
fast clustering and quantization, we use approximate k-mean and fast approx-
imate nearest neighbours library[6][7]. Each frame is represented by a high di-
mensional BOW vector using tf-idf weighting scheme. Each shot is represented
by aggregating all BOW vector of frames using average pooling technique. Note
that, to reduce the effects of quantization error, we use soft-assignment technique
for each feature [8]. In our experiment, there are two ways of quantization: soft-
assignment on database and query (soft-soft), soft-assignment on query image
only (hard-soft). Our experiment shows that, hard-soft assignment are com-
parable to soft-soft assignment on both database and query image. However,
quantization on query side saves a lot of memory and computational cost when
comparing to database side. For fast retrieval, we build inverted index for all
of shots in the database. To compare a query BOW vector with a shot BOW
vector, we use asymmetric dissimilarity proposed last year [9]. The rank list of
this baseline will be used for region of interest based reranking later.

BOW model is a non-structured model, therefore, we need a geometric verifi-
cation post processing to rerank final list of previous step. However, both BOW
and geometric verification only work well when queries and shot frames actually
have much enough shared visual words. To solve this problem, we propose a new
post processing method using object detection based method. Base on rank list
of the baseline, we use Deformable Parts Model (DPM) object detection algo-
rithm [10] to find bounding box containing query object. DPM works very well
on textureless objects because it based on shape structure of query object while
BOW only works with much texture objects. That is the reason why these two
methods are complementary together. We apply DPM algorithm on rank list
from previous BOW step. Each DPM and BOW has a rank list with scores. In
a naive way, we simply compute average on normalized similarity scores of these
methods. This combination improve the performance significantly although we
only one feature detector and one descriptor. However, to take into account
both bounding box of DPM and shared visual word of DPM, we propose a new
similarity score formula:

Snew = (1 + Nd)2 + (1 + Nfg −Nd)log2Nbg(w1.SBOW + w2.SDPM )



where,
Snew, SBOW , SDPM : score of new score, score of Bag of Word model and

DPM respectively
Nd: number of shared words of foreground inside bounding box
Nfg: number of shared word of foreground
Nbg: number of shared word of background
w1: weight of BOW score
w2: weight of DPM score
Figure 1 illustrates the idea of our proposed score. The red lines are outlier

pair matching which will be discarded using geometric verification algorithm
such as RANSAC. is number of green lines, is number of both green and blue
lines, is number of light blue lines. In our experiment we set parameters and .

Fig. 1. Reranking using shared word matching and DPM bounding box combination

For our performance at TRECVID INS 2014, we got three first positions
when using the same technique as illustrated above. Run F D NII 2 is using
hard-soft assignment baseline while F D NII 1 uses soft-soft assignment. We
also use the best config which archives first position at TRECVID INS 2013 (the
system combining 3 detectors, 2 descriptors) with our new reranking method
(run F D NII 3). The performance Table 1 shows that, using one detector, one
descriptor with hard-soft assignment baseline archives the best in mAP.

Table 1. Our TRECVID INS 2014 result.

Runs mAP(%) Position

F D NII 2 32.46 1st

F D NII 1 32.43 2nd

F D NII 3 32.19 3rd

Figure 2 is our performance of run F D NII 2 when comparing to the me-
dian and best score of each query. Figure 3 illustrates an example of our algo-



Fig. 2. Performance of run F D NII 2 using hard assignment on database and soft
assignment on query image.

rithm. The first row is visualization of Mercedes DPM trained model.The second
row shows an example of true matching but wrong object. In this case, even hav-
ing a good asymmetric dissimilarity, the BOW similarity score still recognize the
chair as the given Mercedes logo because of many inlier shared words. The last
row shows that, DPM bounding box (yellow rectangle) supports for the fore-
ground shared words to be relevant to query object. These visual words in the
bounding box will boost the similarity score higher than others.

2 Visual Instance Search Framework Using Video for
Query Expansion

The image and video retrieval system is based on several state-of-the-art ap-
proaches. However, we selected an off-line-on-line architecture that exists in [9]
and [11] (Fig. 4). This system will run in a client-server fashion in the near
future.

The off-line part consists in constructing the bag-of-word (BoW) database.
First the well-known local feature SIFT are extracted at the Hessian Affine
detector locations, as was done in [7], on regularly sampled frames from the
videos (5fps). The codebook is computed by a classic K-means on randomly
sampled descriptors, the codebook size is set to 1 million words. The assignment
to the visual word is performed with an approximate search in the FLANN way
[12, 13] to construct the bag-of-word signature for each frame. Then an average
pooling is performed in order to produce a shot signature. Plus, to reduce the
effect of burstiness, the power-law normalization is applied along with the tf-
idf on word frequency. Finally, for the fast retrieval (online part), the BoW are
indexed in an inverted index.

The online part corresponds to the processing of the query topics. As done
off-line, a BoW representation is computed for each query image. This BoW is
to be searched in the inverted index database.



Fig. 3. First row: DPM model of Mercedes logo. Second row: shared word matching
after geometric verification. Third row: Reranking combining BOW model and DPM
object detection algorithm. (Programme material copyrighted by BBC.)
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2.1 Query Expansion Using Video

We apply a video expansion technique for each query frames provided in run D
(4 images) as follows.

First all frames from all query video are extracted using ffmpeg. We noticed
that the video are interlaced therefore some adapted filter were used (yadif),
however the quality of the frames is very low when there is some movement
(typical streaks appear, making the local descriptors very noisy).

Each query image is compared to the list of frames extracted from its corre-
sponding video in order to find the copy one (undergoing the quality degrada-
tion). For robustness, the distance between frames is composed of a pixel-to-pixel
intensity distance and a RGB histogram distance.

Form the original frame, an extension is made backward and forward, basi-
cally 5 frames on each side. If the extension is not possible on one side (shot
boundary, fast moves, etc) the extension will be longer on the other side.

Finally on the central frame, SURF detector is applied and SURF descriptors
are extracted. Only the ones belonging to the mask from the image query are
kept. These descriptors are tracked backward then forward: compute the SURF
in an enlarged mask version (a bounding box) on the next frame, perform the
descriptor matching and filter with RANSAC. The homography found between
the two sets of points is used to project the current bounding box in the next
frame. This process is done iteratively until the end of the frame expansion. In
case of small objects the original bounding box is stretched a bit in order to
capture more local descriptors.

The expanded frames with their masks (bounding boxes) are simply provided
to our framework as new instances of the objects.

2.2 Experiments

We re-implemented the baseline shown in figure 4 with pure C++ for the high-
speed purpose. Our experiments mostly run on 40 cores of Xeon 2.4 GHz CPU.
We extracted 7.8 million keyframes in 470,000 shots, in total by using only one
SIFT feature, we then have 9.8 billion keypoints.

The offline feature extraction run at 40 fps, overall 3 days were necessary
for the feature extraction, 3 days for clustering, 6 day for ANN then 10 hours to
construct the 57 GBs database (BoW + inverted index).

The online process, with the 100% cache hit, can retrieve over 30 topics in
less than a second (excluding feature extraction). However some disk accesses
must be done due to the memory limitation, consequently it takes between five
seconds and one minute for one topic. The speed depends on how much cache
hits for that topic, and how much cache misses must be load from the disk.

In this year TRECVID 2014 [1], we submitted one run for the four images
query task (D4), three runs for the video query task (E1,E2,E3), and one run is
the late-fusion result of our E3 run with our D1 run. We run our re-implemented
baseline with 4 parameters on both 4 images (run D) and our video expansion



Table 2. Our performance with description

RunID Type Description (only different) MAP

F D NII 4 4 images Stopword-1K, latefusion 20.00

F E NII 1 video Stopword-1K, latefusion 20.50

F E NII 2 video Stopword-1K, earlyfusion 1.20

F E NII 3 video Stopword-10K, latefusion 20.60

F E NII 4 video Stopword-10K, latefusion, NIID1-latefusion 30.10

technique on a video query (run E) with the acceptable performance even we
use only one SIFT feature.

For our submission, we fixed some parameters: sifthesaff (Hessian Affine de-
tector with SIFT descriptor), 1M-word (1 million codebook), powerlaw-bgonly
(power-law normalization is applied only on the background region), fg-bg-
weight-0.9 (the respective weights for foreground and background descriptors
are 0.9 and 0.1). The rest of the parameters for each run are indicated in Table
2, and the performances evaluated by [14] were shown in figure 5 and 6.
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Fig. 5. Our performance (dot) vs. median vs. best for each topic.

We got a final MAP above 20%, the variation depends on these parame-
ters: late fusion or early fusion, and how many stop word. After investigation
on INS2013 dataset, the stop word was set to 10k, and late fusion was preferred
for each image query. Also thanks to our novel video expansion, we got a small
improvement of the performance compared to the four images framework. Nev-
ertheless, as mentioned before, we think that not interlaced video queries would
have given even better results.
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Abstract

We report our Multimedia Event Detection (MED) system in TRECVID
2014. Our system consists of following parts: (1) pre-processing, (2) fea-
ture extraction, (3) feature representation and (4) event detection. We
use both audio and visual features with Fisher vector encoding. In the
evaluation, we compare the technical improvements of using motion, im-
age and audio features. We also evaluated different ways to use related
videos. We submitted our MED system in the full evaluation for both
EK100 and EK10 setting.

1 Data Resources

Currently, we only use data provided by TRECVID [1] in our evaluation. Fol-
lowing the TRECVID 2014’s guidelines [2], we use events in the Event Kit for
training event detection models. Background videos are used to train the visual
and audio codebooks. We haven’t use the Research Collection yet. In order
to test the performance of our system, we use the KINDREDTEST 13 and
KINDREDTEST 14 dataset.

2 MED Framework

The MED framework is shown in Figure 1. Basically, it consists of following
steps: preprocessing, feature extraction, feature representation and event clas-
sification.

2.1 Preprocessing

At first, all videos are normalized to around 320x240. We fix the width dimen-
sion to 320 and change the height so that the aspect ratios are kept. The frame
rates are also kept, however, for those videos that have frame rate larger than
50 fps, we use the standard one instead, i.e. 25 fps. The audio channels are
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Figure 1: Our MED framework

removed from resized videos to save disk space. After that, we extract one rep-
resentative keyframe from resized videos at every two seconds and audio feature
from the original videos.

2.2 Feature Extraction

We use feature from different modalities to model multimedia events: still image
features, motion features and audio features. We use the standard SIFT with
Hessian Laplace detector for extracting still image feature. For motion feature,
we use Improved Dense Trajectories with the combination Hitogram of Oriented
Gradient, Histogram of Optical Flow (HOGHOF) and Motion Boundary His-
togram (MBH) descriptors. We use the library provided online by the authors,
and keep all the default parameters. We use the popular MFCC for extracting
audio feature. We choose a length of 25ms for audio segments and a step size
of 10ms. The 13d MFCCs along with each first and second derivatives are used
for representing each audio segment.

2.3 Feature Representation

Fisher vector representation is a newly developed feature encoding technique
where the mean and variance of local descriptors that belong to each cluster
are also calculated. Therefore, Fisher vector encodes more information than
the bag-of-words feature encoding. Following the standard implementation of
Fisher vector, we use the codebook size of 256 clusters which are generated using



the Gaussian Mixture Model (GMM). We further improve the expressiveness of
Fisher vector by applying PCA for reducing feature dimension, i.e 80-d for SIFT
and 128-d for MBH.

2.4 Event Detection

We use the popular Support Vector Machine (SVM) for training event detectors.
All the positive videos are considered as positive samples. Background videos
are used as negative samples. Miss videos or related videos can be used as
negative or positive samples. It can be also excluded from training data. We
will discuss how to use related videos in the next section.

LibSVM with linear kernel is incorporated to our system for learning steps
because it is a standard implementation for SVM. Furthermore, we also utilized
the pre-computed kernel technique to reduce the training time. This technique
is especially useful when the number of events are large.

2.5 Fusion Methods

In order to combine features from different modalities, we use the late fusion
approach. All features are combined with equal weights.

2.6 Threshold Learning

There are two thresholds that we need to determine for each event: (1) A
confidence score value of the system-supplied threshold, and (2) A rank value
of the system-supplied threshold. We learnt these two thresholds as follows. At
first, we divide the event kit into two parts randomly. The first part contains
80% of event videos which are used for training. The second part contains the
remaining videos in the event kit. After training the event detector, we use
the second part to determine the thresholds. The score threshold is the mean
score of all testing videos and the rank threshold is the mean rank of all testing
videos.

3 Improvements over MED’13 System

3.1 For Motion Features

We tried the improved version of Dense Trajectories motion feature [3]. To
describe trajectories, we choose to use both HOGHOF and MBH descriptors,
which have been proved to be effective for MED by AXES team [4]. In order
to combine these two descriptors, we train two independent GMM codebooks.
After that Fisher vector is used to encode feature from each descriptor inde-
pendently. The resulting feature representation at video level of each descriptor
is normalized by power normalization and L2 normalization. Finally these two
feature vectors are concatenated to form the final motion feature representation
of each video.



3.2 For Image Features

We applied two technical improvements on the image feature. At first, a new way
of video level feature representation is used to pool feature from its keyframe-
based representation. In the last year’s system, we aggregated local descriptors
from all sampled frames in video without explicitly calculating keyframe-based
features. For this year’s system, Fisher vector is encoded for each sampled frame
and normalized using power and L2 normalization. Features from these sampled
frames are averaged to form the video level representation.

The second technical improvement is using RootSIFT features [5]. We have
applied RootSIFT with different implementation of SIFT features such as the
one use in [6], VLFeat [7], and Color Descriptor [8]. Finally we chose to use
VLFeat because it achieved the best performance in our evaluation framework.

3.3 For Audio Features

We investigated several ways to extract MFCC features from audio channel.
These MFCC libraries are used in our evaluation: VoiceBox audio toolkit [9],
Yaafe audio library [10] and the RASTA-PLP library [11]. We found that the
RASTA-PLP implementation achieved slightly better performance than others.
Moreover, we did not observe significant improvement when changing parame-
ters such as window length and step between successive windows. So we kept
using the default setting in the RASTA-PLP implementation.

3.4 How to Use Related Videos?

Related videos or miss videos are videos that contains some related informa-
tion to a particular event. However, these videos are not considered as event
videos because of missing some key evidences. There are three straight forward
approaches to use related videos at the learning step: (1) Related videos as pos-
itive videos (RP), (2) Related videos as negative videos (RN) and (3) Without
using related videos (NR).

4 Contribution of New Components

We evaluated the contribution of new components on the KINDREDTEST 13
dataset. We always observe the same trends on both the KINDREDTEST and
MEDTEST dataset, where the testing event videos are shared. So we only test
our system on the KINDREDTEST dataset. All results are reported in terms of
Mean Average Precision (MAP). Here we only report the over all performance,
which is averaged from all events.

4.1 Improvement of Motion Features

Performance comparison of Dense trajectories and Improve trajectories are
shown in Table 1. The improved version of Dense Trajectories has better per-



formance, which confirms the effectiveness of removing camera motion when
detecting motion feature in video. We even obtain much better result when
combining HOGHOF descriptor with MBH.

Table 1: Performance comparison of different motion feature configurations.

MED13 System MED14 System

Dense Trajectories

(MBH)

Improved Dense

Trajectories (MBH)

Improved Dense

Trajectories (HOGHOF + MBH)

28.33 35.07 40.77

4.2 Improvement of Image Features

Performance comparison of image features are shown in Table 2. The new
aggregation is slightly better than the previous one. However, we can obtain
more improvement when applying RootSIFT feature.

Table 2: Performance comparison of different image feature configurations.

MED13 System MED14 System

SIFT
SIFT

(New aggregation)

SIFT

(New aggregation + RootSIFT)

23.41 24.24 27.02

4.3 How to Use Related Videos?

We evaluated three ways of using related videos as mentioned in Section 3.4.
The results are shown in Fig. 2. We found that using related videos as negative
training samples always achieves better performance than using related videos
as positive ones. The performance difference between using related videos as
negative and without using related videos is minor. However, if we combine
multiple features, we can always obtain better results than other methods for
both EK100 and EK10 settings.

5 Submitted Systems

After evaluating the technical improvements on the KINDREDTEST dataset,
we chose the best configuration of each feature and incorporated it in our final
system. (1) For motion features, unfortunately, we could not finish running the
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Figure 2: Comparison of different ways to use related videos: Related as Posi-
tives (RP), Related as Negatives (RN) and No Related (NR).

best configuration, so we use the same configuration as previous year because
it took less computational time; (2) for image features, we use the new con-
figuration, i.e. new aggregation method combined with RootSIFT feature; (3)
we use the best configuration as mentioned in Section 3.3. These features are
highly complementary as shown on Fig. 2, so we used the late fusion technique
to combine these features in our final submission. Finally, for using the related
videos, we fixed our system to use them as negative training samples for both
EK10 and EK100 settings. We participated in the full evaluation set containing
around 200K videos. We used the same system for both Pre-specified (PS) and
Adhoc (AH) tasks.

6 Result and Conclusion

Results of our MED system on the full evaluation set is shown in Fig. 3. Com-
paring with other systems, we are ranked 11th out of 12 teams in the EK10
setting and ranked 10th in the EK100 setting. This observation is same for
both PS and AH tasks.

Compared to top MED systems, our system is significantly worse in the
EK10 setting. For example, our performance are 67% and 41% relatively to the
best MED system in the EK100 and EK10 respectively. We have learnt that
top performance system have incorporated semantic concept detection, which
can be more helpful when number of training videos are limited. This might be
the reason for the significant drop on the performance of our EK10 system.
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performance on the EK10 setting.



internet collection,” in Proceedings of the Eight International Confer-
ence on Language Resources and Evaluation (LREC’12), Nicoletta Cal-
zolari (Conference Chair), Khalid Choukri, Thierry Declerck, Mehmet Uur
Doan, Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis,
Eds., Istanbul, Turkey, may 2012, European Language Resources Associa-
tion (ELRA).

[2] Paul Over, George Awad, Martial Michel, Jonathan Fiscus, Greg Sanders,
Wessel Kraaij, Alan F. Smeaton, and Georges Quenot, “Trecvid 2014 – an
overview of the goals, tasks, data, evaluation mechanisms and metrics,” in
Proceedings of TRECVID 2014. NIST, USA, 2014.

[3] Heng Wang and Cordelia Schmid, “Action recognition with improved tra-
jectories,” in IEEE International Conference on Computer Vision, Sydney,
Australia, 2013.

[4] Robin Aly, Relja Arandjelovic, Ken Chatfield, Matthijs Douze, Basura Fer-
nando, Zaid Harchaoui, Kevin McGuinness, Noel E O’Connor, Dan Oneata,
Omkar M Parkhi, et al., “The axes submissions at trecvid 2013,” 2013.

[5] Relja Arandjelovic and Andrew Zisserman, “Three things everyone should
know to improve object retrieval,” in Computer Vision and Pattern Recog-
nition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 2911–2918.

[6] Krystian Mikolajczyk and Cordelia Schmid, “A performance evaluation
of local descriptors,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 27, no. 10, pp. 1615–1630, 2005.

[7] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of
computer vision algorithms,” 2008.

[8] K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek, “Evaluating
color descriptors for object and scene recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1582–1596,
2010.

[9] “Voicebox: Speech processing toolbox for matlab,”
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html.

[10] Benoit Mathieu, Slim Essid, Thomas Fillon, Jacques Prado, and Gaël
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