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Abstract 

In Multimedia Event Detection 2014 evaluation [20], SRI Aurora team participated in task 000Ex, 

010Ex and 100Ex with full system evaluation. Aurora system extracts multi-modality features including 

motion features, static image feature, and audio features from videos, and represents a video with Bag-of-

Word (BOW) and Fisher Vector model. In addition, various high-level concept features have been ex-

plored. Other than the action concept features and SIN features, deep learning based semantic features 

including both DeCaf and Overfeat implementation have been explored. The deep-learning features 

achieve good performance for MED, but they are not the right features for MER. In particular, we per-

formed further study on semi-supervised Automatic Annotation to expand our action concepts. To distin-

guish event categories efficiently and effectively, we introduce Linear SVM into our system, as well as 

the feature-mapping technique to approximate the Histogram Intersection Kernel for BOW video model. 

All the modalities are fused by an ensemble of classifiers including techniques such as Logistic Regres-

sion, SVR, Boosting, and so on. Eventually, we achieve satisfied achieved satisfactory results. In MER 

task, we developed an approach to provide a breakdown of the evidences of why the MED decision has 

been made by exploring the SVM-based event detector.  

1 Introduction 

The task of Multimedia Event Detection (MED) aims at detecting complex events, such as “dog 

show”, “wedding ceremony”, “parkour” and so on from open source videos. It is very challenging due to 

the characteristics of events and videos. The event videos usually cover a great diversity of visual con-

tents including various objects, atomic human actions, physical scene, and audio information. Further-

more, open source videos may own various quality issues such as low-resolution, camera motion, occlu-

sion, and so on. Therefore, representing a video with multiple modalities enhances its discriminative ca-

pability of the detection. In addition to the low-level features used in MED13 evaluation, such as 

DenseTrack, DenseSIFT, HessianAffine, Color SIFT, TCH, and Audio features, two types of deep learn-

ing features have been developed. The deep learning features are similar to ObjectBank or Pseudo-

Annotation features which were used in MED13 [1]. Although each individual deep feature (correspond-

ing to one detector) does not perform reasonably good, the combination produces very discriminative fea-

ture vectors. They are kind of features staying between high-level concept features and low-level features. 

More details are in Section 2. In Section 3, we focus on describing the action concepts, audio concepts, as 



well as ASR/OCR concepts. To automatically expand our action concept dictionary, we also developed an 

Automated Annotation system, which is introduced at the end of this section. As Kernel SVM has rela-

tively low efficiency in speed, we introduced Linear SVM into the Aurora evaluation system. To properly 

feed BOW video representation into LinearSVM, BOW is mapped onto a higher dimensional space using 

feature-mapping technique [2]. In addition, a supplementary representation Fisher Vector is also intro-

duced, which actually performs soft feature quantization rather than the hard-quantization in BOW. For 

more details, please refer to Section 4. MER approach is discussed in Section 5. Finally, Section 6 dis-

cusses the fusion strategy, followed by the experimental results on MED Test and Prog Test.  

2 Visual and Audio Features  

The visual features include static image features, motion features, and deep learning features. Although 

deep learning features seem possess more semantics than the regular low-level static feature and motion 

feature, they still behave like low-level features. It is because the individual deep feature (concept detec-

tion) is not reasonably meaningful. 

2.1 Static Visual Features 

Static features are computed from sampled frames (i.e., one sample every second). They are assumed to 

provide object or scene appearance information of an event. Following static features are extracted: 

A. SIFT [3]: SIFT feature is a widely used feature descriptor for image matching and classification. The 

128 dimensional SIFT descriptor is rotation invariant, which captures the local texture structure of an im-

age. We extracted two types of SIFT features: sparse SIFT ( HessianAffine) and dense SIFT (D-SIFT). 

HessianAffine is computed around an interest point detected by corner detector, and D-SIFT is computed 

for dense sampled image patches. The former one is used to describe informative patches of an object, 

while the latter is good to capture local patch distribution over a scene.    

B. colorSIFT [4] : This feature is an extension of SIFT. Instead of computing SIFT based on intensity 

gradient, colorSIFT detects interest points and create descriptors on color gradients. It actually contains 3 

128 dimensional vector with first one from intensity gradient and the other two from color gradient. As a 

result, it is able to capture both intensity and color information. 

C. Transformed Color Histogram [5]: It is a normalized color histogram as describe in [4]. 

2.2 Dynamic Motion Features 

Dynamic features are computed from detected XYT-volumes of a video. These XYT-volumes are sam-

pled by 2D corner point trajectories. They are supposed to capture the motion information of a video. In 

MED14, we only select dense trajectory feature [6]. 

Dense Trajectory Feature (DTF):   Rather than detecting interest point in XYT space, DTF detects 2D 

corner points and tracks them in a short time period. The 2D corners are usually associated with objects in 

a video. By analyzing the velocity or shape of trajectories, we are able to select trajectories with strong 

enough motions to represent the characteristics of a video.  The corners are tracked by KLT tracking. 

From these trajectories, various features/descriptors can be extracted, such as shape, velocity. The AU-

RORA adopts two types of descriptors:  HOG (histogram of orientated gradient) and MBH (Motion 

Boundary Histogram). HOG captures the static appearance information along the trajectory, while MBH 

captures the motion information along the trajectory.   



2.3 Audio Features 

A. MFCC Feature: The audio is PCM-formatted with a sample rate of 16kHz. The extracted acoustic 

features, using HTK[25], are the typical Mel-Frequency Cepstral Coefficients (MFCCs) C0-C19, with 

delta and double deltas, for a total of 60 dimensions. Each feature frame is computing using a 25 ms win-

dow, with 10 ms frame shifts. Short-time Gaussian feature warping using a three-second window is used, 

and temporal regions containing identical frames are removed.  

B. CMU Audio Features: We also adopt another two types of AUD feature (UC, Bauds), as described in 

[13] and [14]. 

2.4 Deep Learning Features 

Convolutional neural networks (CNN) have recently shown outstanding performance in large image clas-

sification tasks such as ImageNET.  In [21], [22] and [23] it has shown that features extracted form an 

already trained network on a large image dataset can be used as a powerful representation for classifica-

tion/detection on other dataset. In MED, two types of implementations are adopted by our system. 

A. DeCaf Implementation: DeCaf is implemented in [24]. The network is trained using ILSVRC-2012 

data. The network take a square image and pass it through five successive convolutional layers 

(C1,C2,…,C5) and three fully connected layers (FC6,FC7 and FC8), as shown in the following figure.  

We use the output of FC7 layer as the feature representation for each key-frame of a video which is a 

4096 dimensional vector. The key-frames are sampled form a video every 2 seconds. The final represen-

tation for each video is obtained by taking the average score of each dimension across the key-frames of 

that video.  Thus the dimension of the final representation for each video remains 4096. For classification 

we used Support Vector Machine with Histogram Intersection Kernel. All the features are L2 normalized.  

 

Figure 1: DeCaf Architecture 

Figure 2: MED results on MEDTest using DeCaf feature 



B. Overfeat Implementation: The Overfeat network was one of the best performing models on 

ImageNet ILSVRC 2013 challenge and the code and models are publicly available. We used Overfeat in 

MED, both in the form of generic deep features based on aggregate statistics from the whole video as well 

as in the form of concepts per key-frame for event query definition and recounting. Specifically, we used 

the features from layer 21 which is the softmax layer and produces 1000 dimensional vector per image, 

where each dimension corresponds to an object category. Given image keyframes from video, each image 

is resized into 256 x 256 image size and classified into 1000 image categories, in the form of a [1 x 1000] 

feature vector. The imagenet labels consist of general to specific categories. For example, there are 200 

classes of dogs and 60 classes of cats, but only one type of plier. For feature aggregation, we considered 

several pooling strategies per video, namely, average pooling, thresholds at 0 and 1 followed by average 

pooling, and pooling following by binarizing responses. We tuned the performance on Medtest on PS11 

categories. The best performance was achieved by threshold at 1.0 + average pooling, at 33.80% mAP. 

3 High-Level Concept Features  

One of the challenges for event recognition is to bridge the semantic gap between low-level features and 

high-level events. Concepts are directly connected to the Event Kit Descriptions. In Aurora system, we 

develop three types of concepts: visual concepts, audio concepts, and ASR/OCR text.  

3.1 Visual Concepts   

The visual concepts include object, scene and action concepts. The former two are usually defined over a 

still image, while the latter is defined over a spatial-temporal video volume.  

A. Action Concepts:  

Actions are typically atomic and localized motion and appearance patterns, which are strongly associated 

with some specific event. According to our evaluations on MED12 and MED13, action concepts base fea-

tures are significant for MED, especially with less train-

ing examples such as 010Ex and 000Ex tasks. Training 

action detectors needs a large number of annotated videos. 

The human manual annotation is very laborious. To re-

lease annotators from the time-consuming job, we have 

been exploring a novel strategy to achieve semi-

automatic concept annotation (SAA). A regular process 

of concept annotation over consumer videos starts with 

downloading relevant videos of one concept using search 

queries and then annotators start to annotate the starting 

and ending period as the positive clips. During this pro-

cedure, we noticed that, given a specific well-defined concept, the major parts of the majority of the col-

lected videos are relevant. Having this observation, we developed the SAA system to automatically select 

relevant video clips for a given concept using PageRank technique, as shown in Figure 3. The assumption 

of our approach is that the majority of the videos are relevant to the concept.  

To evaluate the performance of SAA, we select 60 SAA action concepts, and then apply these detectors 

onto videos to extract concept features for MED, as discussed in 3.4. This waypoint experiment is con-

ducted on PS11 events, as shown in Table 1, where SAR_AUTO13 is the SAA concepts. We compare it 

Figure 3:  Semi-Supervised Automated Annotation 



Table 1. MED results on PS11 using concept features. 

with concepts Sarnoff_MED12 which is human annotated concepts, as well as SIN concepts. As we can 

see, SAA achieves competitive results to human annotated concepts. 

B. Object and Scene Concepts:  

The object and scene concepts are covered by TRECVID SIN concepts. TRECVID SIN task defines 

about 500 concepts which include objects such as TV screen, car, building, and scenes such as mountain, 

beach, street, office, and so on.  

3.2 Audio Concepts   

The audio concepts are either taken from CMU or annotated by our team. The Neural Network -based 

audio concept classification system employs the Parallel Neural Network Trainer TNet [17] technology 

from Brno University. It has a basic architecture which consists of two hidden layers with 1,000 neurons 

each and sigmoid activation functions. For the training phase a stochastic gradient descent optimizing 

cross-entropy loss function was used. The learning rate was updated using the “newbob” algorithm: It's 

kept fixed at LR=0.002 as long as the single epoch increment in cross-validation frames accuracy is high-

er than 0.5%. For the subsequent epochs, the learning rate is being halved until the cross-validation in-

crement of the accuracy is inferior to the stopping threshold 0.1%. The NN weights and biases are ran-

domly initialized and updates were performed per blocks of 1024 frames.  Short-time Gaussian feature 

warping using a three-second window is used, and temporal regions containing identical frames are re-

moved. 

3.3 ASR/OCR Text Information  

We adopted an information retrieval based approach retrieve the videos based on OCR/ASR. The event 

kit is used to automatically construct the query. All fields in the event kit are used for ASR query while 

the audio field is dropped in the OCR query. An index is created for ONR/ASR outputs of video clips 

using the Galago engine. A sequential dependence model is used for retrieval both OCR and ASR.  The 

model takes both ordered and unordered phrases into account. Terms are weighted based on event kit 

fields. The weighting is set manually. In order to fuse OCR/ASR results with low-level and high level 

features, an expected-precision is computed. Since many videos do not have OCR/ASR data, a video-

level fusion is carried out; where a low OCR/ASR retrieval score does not affect the feature based retriev-

al score, while a very high OCR/ASR retrieval score significantly increases the final score. 

3.4 Concept Based Event Representation (CBER)   

Given a video x, a concept detector φi can return a confidence value ci. In practice, however, it is not 

wise to feed a long length video into a detector and get a single detection confidence for the entire video, 

because concept detectors are trained on single frames or short video segments. Our method uses the 

atomic concept detectors as filters that are applied to a given XYT segment of a video clip to capture the 

similarity of content to the given concept. So as a first step towards representing a video clip with con-



cepts, each concept detector is applied to each XYT window in a video to obtain an K*W matrix C of 

scores, where Cij ∝ p(ci|wj). Each Cij is the detection confidence of concept i applied to window j. 

Given the raw detection scores of concepts over the full video, the event depicted in the clip can be repre-

sented using a number of features derived from Cij. One option is to select the maximum detection score 

Ci
max over all sliding windows as the detection confidence of concept detector φi. As a result, we are able 

to obtain a K-dimensional vector Cmax to represent a video. Meanwhile, we have embedded a video into 

the concept space defined above. What is more, based on the K-dimensional semantic space, we also ex-

plore the following representations: 

MAX pooling: for each concept detector, only the maximum detecting score over all sliding windows is 

pooled to show the probability of concept given a video. 

Max-Avg-Std (MAS): Other than the maximum detecting score, we believe other information of the con-

cept distribution over a video, such as average and standard deviation, is also discriminative for an event. 

Hence, for each concept detector, the maximum, average, and standard deviation values over all sliding 

windows are selected to form MAS feature.  

Bag of Concepts (BOC): Akin to the bag of words descriptors used for visual word like features, a bag of 

concepts features measures the frequency of occurrence of each concept over the whole video clip. To 

compute this histogram feature, the SVM output is binarized to represent the presence or absence of each 

concept in each window. 

4 Video Visual Representation   

As we observed in previous MED evaluation, spatial pooling beyond BOW can further improve MED 

performance. We used 12 pre-specified Region of Interests (ROI) in MED13, but it significantly increases 

the number of training and search time. To overcome this disadvantage, we employ two video representa-

tion techniques in our MED14 system: Feature Mapping and Fisher Vector. Feature Mapping directly 

project the BOW features onto a higher dimensional kernel space, where the videos can be linearly sepa-

rated. As a result, Linear SVM is able to split the hyper-space easily and efficiently. Feature Mapping still 

works on hard quantized features. Fisher Vector is the soft quantization version which embedding a video 

into a higher dimensional space. They are complementary to each other. 

4.1 Feature Mapping 

Feature mapping represents the video as the histogram of “words” corresponding to each feature type 

computed over the entire video clip. In order to compute BoW descriptors for each feature type, feature 

specific vocabularies are first learned using k-means clustering of raw features. All the features such as 

SIFT, DTF, STIP have a vocabulary of 10000 words. Once the features in a video are quantized using the 

respective vocabularies, a BoW is computed per feature. Event models could be trained using SVM with 

intersection kernel. While instead of directly training models with kernel SVM, we adopt an efficient and 

effective kernel approximation algorithm named as “Feature Mapping”(FMAP) to speed up the training 

and test steps. FMAP maps each dimension of histogram based feature into an infinite feature space, and 

then sample out a discrete feature map with finite dimension. After FMAP, the original feature is trans-

formed into a higher dimensional mapped feature vector, which could be simply fed into a linear SVM to 

learn models. Comparing with traditional kernel SVM method, our FMAP framework achieves similar 

accuracies and around 50 times faster evaluation speed, as shown in table 2. 



 

BOW+ HI kernel Fisher Vector(GMM 256) 
Feature Mapping 

~4,100 training data, ~3,200 testing data 

Feature  Feature length: 10,000 Feature length: 163,840 
Feature length: 30,000 

 

mAP Trn/Tst time(sec) mAP Trn/Tst time(sec) mAP Trn/Tst time(sec) 

HOF 0.1862 

Trn:4017.43 

Tst: 4444.54 

0.2841 

Trn: 110.030 

Tst: 163.697 

0.1736 

Trn:91.094 

Tst: 85.058 

HOG 0.2993 0.3158 
0.2939 

MBH 0.3475 0.3547 
0.3319 

STIP 0.2205 0.2381 
0.2084 

D-SIFT 0.2720 0.3222 
0.2769 

HESSIAN AFFINE 0.2639 0.1368 
0.2492 

     Table 2:  The performance comparison between Feature Mapping, Fisher Vector and Kernel SVM. The mean 

Average precision (mAP) is on 3-fold dataset of Event 6-15. The table summarizes the accuracies and evaluation 

speed of different low-level features.  

4.2  Fisher Vector  

The second method is based on state-of-the-art image classification algorithm—“Fisher Vector”(FV). FV 

first trains a Gaussian Mixture Model with 256 components by standard EM algorithm, and then encodes 

each extracted low-level descriptor with the fisher kernel. After averaging all the fisher-kernel vectors 

into a single feature vector, a linear SVM is adopted for model generation.  Comparing with the first fea-

ture mapping method, FV embeds higher-order statistics with better discriminative capacity, and also de-

scribes the fine-grained information in a probabilistic way which increases the generality of feature repre-

sentation. For some events, FV achieves better performance than FMAP. 

5 Zero-shot Learning for 000Ex  

000Ex task is to conduct event detection without any training examples. The only information available is 

the event kit which provides the description of the target events. We developed a system which leverages 

the open knowledge source such as Wikipedia to bridge the gap between the event kit and the CBER 

models and available OCR/ASR text. As a result, our system is able to achieve good performance using 

the sequential dependence model [18] given only OCR/ASR information and concept detection results. 

This model assumes dependencies between neighboring words without modifying order and achieves 

substantial gains in common text collections. Differing to what we did in MED13, we have new query 

construction and search approach, as described below.  

5.1 Zero-shot Query Construction 

In the case when there are no exemplar videos, we created a query that targeted the OCR and ASR text 

sources as well as the action and object concepts extracted from videos. Consistent with the TRECVID 

guidelines, the queries were created by a person using an interface and not by automatic processing of the 

event description as was done in previous years. 

To support this process, we created a simple web interface. The interface allowed for the separation of 

concepts and ASR/OCR terms into separate groupings referred to as “aspects.” We experimented with a 



number of approaches when creating this approach, but ultimately settled on using two aspects called 

“primary” and “secondary.” The “primary” aspect represented concepts which the searcher felt strongly 

indicated the specific event, while the “secondary” aspect represented concepts and terms which although 

related to the event, did not clearly distinguish it from other events. For example, for event 42 (Building a 

Fire), the searcher selected "Flames" and "Smoke" as primary concepts and "Grilling food" and "thatch" 

as secondary concepts. "Flames" and "smoke" are strongly indicative of the act of making a fire, while 

"grilling food" is an action that may occur when people build a fire, and likewise "thatch" is a texture that 

may be seen amongst the materials used to make a fire. 

For each aspect, the searcher could separately select visual concepts (likely to appear in videos), audio 

concepts (likely to be heard), OCR terms (likely to be as text in the video), and ASR terms (likely to be 

said in the video). OCR and ASR terms are typed directly into text boxes. (The OCR and ASR concepts 

were also augmented with a query expansion process that brought in large numbers of potential synonyms 

or alternate phrasings.) For concepts, the searcher entered a free-text query that ranked related concepts so 

they could be chosen; the searcher could also enter a concept ID directly if it was known. 

As a final step of processing, the system automatically added any concepts that were synonymous with 

concepts that were already selected. For example, we had two concept detectors called XX, so if a search-

er selected one, the other was almost certainly intended, too. When the query was constructed to the satis-

faction of the searcher, it was converted into a semantic query for downstream processing. 

5.2 Searching by OCR/ASR text 

We processed the OCR text and the ASR text as separate Galago indexes. We used the appropriate parts 

of the semantic query to search the indexes and combined the results. Search was done using the Markov 

Random Field-based sequential dependence model (Metzler and Croft 2005).  The model takes both or-

dered and unordered phrases into account.  

The OCR and ASR rankings were merged. That combined score was then combined with an additional 

score that used the expanded OCR/ASR terms. 

5.3 Searching by Video Concepts 

Retrieval models that exploit non-sequential dependencies have shown to be successful in information 

retrieval (Metzler and Croft 2005) and image retrieval (Feng and Manmatha 2008). In our work, we focus 

on temporal and spatial relationships between concepts to improve video retrieval effectiveness. Our de-

pendency work uses and MRF-based approach (Metzler and Croft 2005), one of the best performing algo-

rithms in the information retrieval community. We explore the dependency settings shown in the figure 

below (v is a video frame and c is a concept): (1) full independence, where each concept is considered 

independently; (2) spatial dependence where the presence of two concepts in the same video frame is 

treated as important; and (3) temporal dependence, where having concepts occur in consecutive frames is 

treated as important. 



Table 1. MED results on PS11 using concept features. 

Table 1. Three Dependency Settings 

Since the event kit is the only input in the EK0 task, the specific text used is the key to our performance, 

one of our focuses is to improve the textual descriptions of the events. We replaced the name of the event 

with a short query. Then, we automatically removed common phrases based upon the Lemur 418 English-

word stop-list. Using the name and short description fields, we ran these queries against Wikipedia, add-

ing a field of pseudo-relevance feedback terms. 

6 Multimedia Event Recounting 

The purpose of recounting is to provide data driven evidence to explain the decision made by an event 

classifier on a new video query. Recounting captures the key entities, actions, and scenes that pertain to 

that particular event and differentiate it from other events. Hence, it captures the semantic description of 

the scene that is also discriminative. Our approach to MER strongly integrates event classifier response 

with recounted evidence. We localize spatio-temporal coordinates of the evidence that contribute most to 

the final decision and rank them by their importance. To this end, we first use action and image concepts 

as intermediate semantic representation of a video. Then, we decompose the aggregate event score into 

contributions from individual concepts. 

For concept based event recounting, concepts detectors are applied to video shots and image key frames. 

The scores are max-pooled statistics of the shot and frame level scores. These feature vectors represent 

concept responses per video and are used as inputs to train a non-linear SVM classifier. Specifically, we 

apply the min (histogram intersection) kernel, which maintains additivity and mutual independence of 

features while learning the weights. This property is exploited to derive a simple closed form solution for 

individual concept importance. 

Concept importance is analyzed at two levels. First, after model training an “event query” is generated, in 

which concepts are ranked and filtered according to the weights learnt by the event model. During “re-

counting”, the event query is used as a prior and combined with concept scores for the particular video. 

The details are as follows. 

While for a general kernel it is difficult to interpret the SVM weights, we could approximately compute 

the concept importance from the weighted average of support vector dimensions. Given an additive SVM 

model, the decision function is represented by Equation 1,  

ℎ(𝑥) =  ∑ 𝛼𝑠𝑣 ∙ ∑ 𝐾(𝑥𝑑
𝑠𝑣 , 𝑥𝑑) + 𝑏         (1)

𝐷𝑆𝑉
                            ℎ(𝑥) =  ∑ ∑ ℎ𝑑(𝑥) + 𝑏         (2)

𝑆𝑉𝐷
 

where 𝑥𝑠𝑣 represents one of the support vectors and 𝛼𝑠𝑣is the signed weight of 𝑥𝑠𝑣. 𝐾 is the kernel func-

tion that operates on  𝑥𝑠𝑣and a particular query instance 𝑥. An equivalent form is presented in Equation 2, 



where the sum over dimensions is swapped to separately compute contributions per dimension in the de-

cision. Here, ℎ𝑑 equals 𝛼𝑠𝑣𝐾(𝑥𝑑
𝑠𝑣 , 𝑥𝑑) are the individual feature wise decisions.  

A model driven event query is a template that defines a general list of concepts that are relevant to the 

event. This is computed as the weighted average of the support vectors, as shown in Equation 3. Here, ℎ𝑑 

is the importance of the concept at dimension 𝑑, computed as the inner product between support vector 

weights and the corresponding concept scores. The concept scores are ranked according to this im-

portance score and listed in the event query. 

ℎ𝑑 =  ∑ 𝛼𝑠𝑣 ∙ 𝑥𝑑
𝑠𝑣

𝑆𝑉
             (3)                           ℎ𝑑(𝑥) =  ∑ 𝛼𝑠𝑣 ∙ 𝑚𝑖𝑛(𝑥𝑑

𝑠𝑣 , 𝑥𝑑)
𝑆𝑉

            (4) 

Per video recounting: Given a new video query, the associated concept scores are incorporated to update 

evidence, as shown in Equation 4. Specifically, the min kernel function operates as a gated filter that al-

lows only those concepts that are weighted highly by all the support vectors as well by the video query.  

 

7 Experiments 

7.1 Training/Testing Methodology 

We follow the MED14 evaluation plan [20], and use the exact positive and negative videos specified in 

the evaluation package to training our event models. All training process adopts the same 5K background 

videos as the negatives. For the low-level features, with Feature Mapping and Fisher Vector representa-

tion, we employ Linear SVM ( libLinear [10] ) to learn the event detectors.  

7.2 Fusion Approach 

Classifier fusion is the technique of fusing confidence scores generated by multiple classifiers to make 

final event decisions. Given enough training data, the task is to partition the training data into folds and 

train meta-classifiers on individual classifier scores. We perform three-fold fusion for the Ex100 module. 

Specifically, we partition the 100 examples and background randomly into three folds. Then we train on 

two folds, and test of the remaining fold iteratively. Finally, the test fold decisions are used for learning 

meta-classifiers. 

We apply logistic regression (L1 and L2 loss), linear SVM, Adaboost and Extremely randomized trees for 

the ensemble learning. These were selected based on their average performance on the PS11 (events 6-15) 

dataset. Using any one classifier alone, instead of the ensemble leads to at least 2% loss in mAP scores. 

This is also corroborated by earlier studies. Overall, we observed an improvement of 3-5% over simple 

Geometric mean fusion, averaged across 20 events. 

 
Table 3: Comparing geometric fusion and learning based fusion results 



 

Similar to MER, we also use the event model to analyze importance of individual visual classifiers in the 

final decision. These can be later used for improving or filtering weak classifiers to reduce computational 

footprint. Figure 2 shows the contribution of individual classifiers, which we have aggregated broadly 

into four modalities. For example, for event “parade”, motion and color contribute most to the final classi-

fication, while deep features are irrelevant. In contrast, for event “rock climbing”, all the modalities con-

tribute almost equally.   
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