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Abstract. This contribution describes our first appearance at the TRECVid Instance Search task (Over et al.,
2014; Smeaton et al., 2006). Therefore, we try to verify our approach by introducing an extensible system ar-
chitecture in order to process both subtasks of interactive and automatic runs using basic audiovisual concepts.
The first approach incorporates an easy-to - the creation of a graphical user interface for faster assessment and
evaluation by using well-known visual MPEG–7 descriptors in combination with the audio track to distinguish
indoor and outdoor scenes with respect to a given query. In contrast, our automatic runs are mainly based
on statistical assumptions about the distribution of shots and reverse shots around the appearance of the query
samples in the video collection. All runs make use of an adaptable and easy-to-use keyframe extraction scheme
that is based on the distribution of shot lengths and greatly reduces the number of frames to be processed by
the entire indexing and retrieval system.

1 Structured Abstract

1. Briefly, list all the different sources of training data used
in the creation of your system and its components.

• For training issues, we solely used the given master shot
reference, and the audio and video tracks of the first
video with ID 0 from the provided BBC EastEnders
video footage.

2. Briefly, what approach or combination of approaches did
you test in each of your submitted runs?

• Within the first interactive run I E TUC MI 1, we are
using MPEG-7 Dominant Color in combination with
audio-based indoor/outdoor detection and a semantic
shot composition that is based on around 1.1 million ex-
tracted keyframes.

• All other runs are based on a Probabilistic Run-length
weighted Neighborhood Algorithm (PRNA) that is built
on probabilistic assumptions about the occurrences of
instances and thus shrinks the keyframe pool to around
6,700 available frames.

• Our second interactive run I E TUC MI 2 combines the
PRNA with a semantic shot composition based on the
advanced dominant color descriptor.
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• The previous configuration is applied to the fully auto-
matic run in F E TUC MI 3.

• A last run F E TUC MI 4 validates the PRNA within
a shot composition approach for similar shots in a spe-
cific environment using basic MPEG-7 descriptors like
dominant colors and color layout.

3. What if any significant differences (in terms of what mea-
sures) did you find among the runs?

• We present an adaptable and easy-to-use keyframe ex-
traction scheme in order to reduce the large amount
of 42 million frames to 1.1 million keyframes that
were used for indexing or instance comparison at
I E TUC MI 1.

• A further reduction to barely 6,700 keyframes was
achieved by using our proposed PRNA approach with-
out affecting our results significantly at I E TUC MI 2.

• As expected, and in terms of MAP, there is a significant
difference between both interactive and fully automatic
runs.

• The results of the runs with PRNA are promising within
Precision at rank 30 (P30). Since these probabilis-
tic methods depend on initial starting points, the score
drops heavily afterwards due to a lack of occurrences.
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4. Based on the results, can you estimate the relative con-
tribution of each component of your system/approach to its
effectiveness?

• The reduction scheme of extracting representative
keyframes via preprocessing or even PRNA is crucial
to an efficient further processing.

• The user-defined database functions allow a fast com-
parison of the descriptors even on mid-tier computing
architectures.

• The usability of our interactive GUI seems appropriate
to improve the results while allowing a fast rejection of
false positives.

5. Overall, what did you learn about runs/approaches and
the research question(s) that motivated them?

• The Dominant Color Descriptor applied on small im-
age blocks of 48×48 pixel is vulnerable against color
noise in such large data sets with more than 75 million
descriptor entries. The Euclidean distance measure ap-
pears to be insufficient for a reliable application. Com-
plementary features are necessary to improve Precision
and Recall.

• The PRNA method seems to be an usable heuristic for
finding a set of new shots containing an instance based
on some detected samples in the direct or indirect neigh-
borhood, especially to boost the top 30 result entries.

• Tiny keyframes are effective for matching video footage
of the same source that has been lossy encoded.

• In our opinion, the inclusion of the audio tracks seems
promising despite we could not measure the direct per-
formance gain within the current setup.

The remainder of the paper is organized as follows: Sec-
tion 2 provides a general view about the basic concepts and
more common components of our system architecture and
the underlying workflow for both run types. The specific al-
gorithms that were used within the system, are described in
Section 3. Remarks regarding the official evaluation results
are given in Section 4 followed by some conclusions in Sec-
tion 5.

2 System Architecture

In the following, we give an overview about the core com-
ponents of our system (cf. to Section 2.1) that are crucial to
accomplish the instance search task. The proposed keyframe
extraction scheme and necessary preprocessing steps that are
directly applied to the original video footage and sample
queries of the topics are discussed in Section 2.2. To cope
with the large amount of data, a database is essential (Sec-
tion 2.3) to store any extracted descriptors and to calculate
distances with respect to the search query inline in order to
deliver the most similar instances (Section 2.4).

2.1 Overview

The basic scheme of our system appears similar to classic
approaches to Image Retrieval and other systems previously
developed in the context of TRECVid, such as (Gupta et al.,
2012; Mukai et al., 2011; Natsev et al., 2010).

We present two different approaches to tackle the different
requirements of interactive and fully automatic runs. There-
fore, we focus on the illustration of the complex workflow
of our system for the interactive run in more detail. In con-
trast, the presentation of the system for the automatic runs
appears rather short while solely consisting of a concatena-
tion of methods being described in the subsequent section.

2.1.1 Interactive Run

Within the interactive runs (see Figure 1), we firstly prepro-
cess both query data and the video collection with different
steps to extract and build a solid and consistent base of data
(refer to Section 2.2). Visual descriptors are extracted at the
position of the requested object and the size of its smallest
bounding box area. Additionally, we investigate the audio
track of the sample video in order to automatically estimate
whether it belongs to an indoor or outdoor concept. Human
operators were enabled whether to make use of or neglect
this information at the beginning of a run leading to distinct
retrieved datasets.

In contrast to the single images of the queries, the video
footage consists of more than 41,760,000 frames. A reduc-
tion step is introduced that splits each video of the test col-
lection into representative units of keyframes decreasing the
total number of frames to be processed any further to 2.6 per-
cent of the original volume resulting in 1,145,775 frames in
total. This yields to a significantly decreased amount of oc-
cupied disc space from 286 GB in the video domain to 64 GB
of directly accessible images. In order to locate the requested
objects in different sizes and positions, we subdivide each
frame by a grid at different resolutions, where basic visual
features are extracted (compare to Section 3) from each cell.

While the extracted descriptors are stored in a database,
distances between the descriptors and an incoming query are
calculated using distance measures that depend on the under-
lying descriptor. We achieve a great speed-up by utilizing the
capabilities of user-defined functions from PostgreSQL that
allow us to perform any similarity computation directly in the
database. During the next step, the best results are retrieved
in ascending order, one keyframe per shot being stored in an
image file. These files are successively loaded in chunks of
six images into a graphical user interface that quickly allows
to assess the absence or presence of an object. In compliance
to the rules of interactive runs, we save the period of time that
has already been expired since the start of the search when-
ever a positive result is retrieved. Finally, the shot IDs of the
positive evaluated keyframes are extracted and stored with
their evaluation time stamps into the TREC XML result file.
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Figure 2. Distribution of the shot lengths with an overview about
the locations of the extracted keyframes measured in frames with
respect to the beginning of a shot.

2.1.2 Automatic Runs

In order to accomplish the task for fully automatic system
execution, we apply a probabilistic algorithm (refer to Sec-
tion 3.2) that follows basic assumptions while being con-
cerned with a repetitive and therefor dependent occurrence
of instances in direct neighborhood of a known instance sam-
ple. Therefrom, we match features extracted from the given
master shot references with the ones provided alongside the
query object. This can be referred to as an approach to du-
plicate detection using the information from the query video.
Furthermore, we were able to combine this approach with a
shot composition and Advanced Dominant Color descriptors,
defined in Section 3.4, to infer a grouping of scenes rather
than shots.

2.2 Preprocessing and Keyframe Extraction

Our different approaches for feature extraction demand an
abundant preprocessing on the given data. The underlying
video collection consists of 244 MPEG-4 video files where
each contains four omnibus episodes of around 30 minutes
plus short additional video sequences like advertisements.
The first step is concerned with splitting the data collection
into the 471,526 automatically determined shots according to
their starting and ending points that are given in the master
shot reference table. This task can be easily accomplished by
utilizing FFMPEG1 via command line while being accompa-
nied by a deinterlacing procedure that is based on the built-
in YADIF filter, and a correction of the pixel aspect ratio to
squared pixels by stretching the anamorphic images. Besides
extracting the video to a full image size of 1,024×576 pixel,
we extracted a reduced version with 456×256 pixel, and cre-
ated an audio-only version at 16 kHz mono in 16 bit PCM
format.

To further reduce the information that needs to be pro-
cessed by our image processing approaches, we decided to

1http://www.ffmpeg.org, 10/17/2014

extract representative frames from each shot that we refer to
as keyframes. The amount of frames extracted from each
shot is determined by its shot length. Figure 2 shows the dis-
tribution of the shot lengths provided by the master shot ref-
erence table. We found the following trivial selection scheme
to work nicely: Single keyframes are selected from the mid-
dle of short clips lasting less than two seconds, and two addi-
tional frames at the beginning and the end when lasting up to
five seconds. In order to adapt to camera panning in longer
shots or a change in the background, for example by clos-
ing or opening a door, another two additional frames are ex-
tracted at 25 percent from both shot boundaries. Beyond, we
introduce a safety margin of 20 frames from the shot bound-
aries in order to mitigate predictable side effects of impre-
cisely located shot boundaries that are inherent to the auto-
matically determined master shot reference table, and that
might prove crucial to our approach that clearly neglects any
spatiotemporal information of intermediate frames. Besides,
all keyframes were saved in JPEG-format with highest qual-
ity settings. In order to prevent any statistical corruptions in
the latter feature extraction process by black borders or other
artefacts at the margins of the images, we crop each image
by default at its full resolution by 8 pixels in each direction.

The anamorphic equalization of pixels of the test collec-
tions also forces us to apply these operations on the query
images to be capable of retrieving similar distortion-free in-
stances. Another reason is the capability to derive the audio-
based indoor/outdoor-concept of a given sample shot of the
query image. This is achieved by a conversion of the 120
video samples of all 30 topics from WEBM- to MPEG-4 for-
mat while applying deinterlacing and stretching operations
as described above.

Since our PRNA method relies on the assumptions that po-
tential instances could be found in the direct spatiotemporal
neighborhood of the sample query, we extract the first frame
of each shot with an image size of 32×18 pixel in uncom-
pressed bitmap format from all available data sources.

2.3 Database

The need of calculating results for many querys and the re-
quirement to order them for a proper submission led to the
approach of storing all values in a database with the aim to
avoid a repeated recalculation. For this purpose, we decided
to use PostgreSQL as our central database repository with its
sophisticated capabilities to efficiently process large amounts
of data. The native support of array data types provides an
easy and convenient way to store the results of the extracted
visual MPEG-7 features like Dominant Color or Color Lay-
out Descriptors (cf. to Section 3.1).

We calculate the distances between the descriptors of the
query and each block of the video corpus directly in the
database via user defined functions (UDF). Following this
approach grants us direct access to the data without any in-
termediate steps or data transfer that usually slows down any
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Figure 1. Basic workflow of our system at the example of the MPEG-7 Dominant Color Descriptor used within our interactive experiments.
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process. Besides distributed calculation in the cloud and
GPGPU computing, we consider this method as a fast solu-
tion to reliably exhaust multi-core processing systems. Since
the calculation between the queried descriptor and the stored
descriptors can be considered independent within our grid-
based approach, the calculation process can be speeded up
by a core-wise parallel subdivision of the overall amount of
data.

We use PostgreSQLs native programming language
PL/PgSQL (The PostgreSQL Global Development Group,
2014) to reimplement the well-known MPEG-7 distance
measures from Caliph & Emir (Lux, 2009) for the Dominant
Color and Color Layout Descriptors, respectively. Setting
the volatility parameter to immutable enables a parallel exe-
cution with read-only access per table resulting in a massive
speed improvement (Quad-Core system with hyperthreading
resulting in eight cores in total) of more than ten thousand
times faster in comparison to a calculation with the Java li-
braries of Caliph & Emir or multiple thousands compared to
MPEG-7 FexLib (Bastan et al., 2010).

2.4 Querying

Before a query is processed, the previously described steps
are applied. These data units are further processed by a Java
program that includes the Caliph & Emir Image Retrieval
library (Lux, 2009) to extract the MPEG-7 based dominant
color features. To not hinder calculation and to prevent trans-
fer failures to happen, the resulting features are firstly stored
by writing them into a plain text file. Another Java tool parses
the contents of this file into the database with help of the ap-
propriate JDBC-Driver. To minimize the transfer overhead,
this is done by splitting the stream of datasets into chunks of
100 units per SQL query. Once the database is filled, cal-
culation is initiated via a multi-threaded program in Java, in
which every thread builds its own database connection and
calls the previously implemented UDF distance functions on
a fraction of the data stock. The results of this calculation are
then stored into another table. A set of results is now fetched
from the database using SQL-SELECT statements in order
to deliver the required 1,000 different shots.

Within the interactive runs, the calculated outcome was in-
tellectually verified for correctness using a self-built graph-
ical user interface (see Interactive Component in Figure 1).
The classification results are arranged in a folder structure
that is easily readable by other programs or humans. To
satisfy the stipulation of the underlying task, the evaluated
folder structure is then parsed and converted into an XML
file.

3 Algorithmic Approaches

Our portfolio of algorithmic approaches comprises visual
feature extraction procedures using dominant colors (Sec-
tion 3.1), probabilistic assumptions about the structure and

occurrences of queries and instances in the video footage
(Section 3.2), and an incorporation of the audio track with the
aim to distinguish indoor and outdoor scenes (Section 3.3). It
is complemented by methods that group adjacent shots into
higher-level scenes (Section 3.4).

3.1 Visual Feature Extraction

To counter the problem of objects appearing in a variety of
different sizes, we extract features not only from full images,
but also from the rectangular cells of a grid structure. A ba-
sic assumption is that within a tile an object might be repre-
sented at the same zoom level as in its query picture. As a
consequence, the size of those blocks is based on the approx-
imate dimensions of the smallest queries. In the past years,
the query instances were based around a minimum size of 35
to 40 pixel in at least one dimension. Hence, we decided to
use an enlarged block size of 48 x 48 pixel.

According to this scheme, the shots that originated from
the preprocessed videos are scaled down, e.g. when we want
to make use of a 5×3 block pattern, we first need to create a
rescaled copy of the full image containing 1024×576 pixels
to just 240×144 pixels. The opportunities that objects vary
in their size, pose or point of view with respect to the image
query, their representations are taken into consideration by
extracting three different scaled grids, thus building a three
layered pyramidal structure with resolutions of 240× 144,
168×96 and 96×48 pixels.

With this block building approach, an object might overlap
at the edges of a tile and therefore might be split up into
several parts, making it much harder to detect. We eliminate
this issue by shifting the grid for half the size of a subsection
once in vertical as well as in horizontal direction. In this
way, we end up with a representation of 66 different blocks
at multiple resolutions for each image from where arbitrary
features might be extracted per block.

The descriptor of our choice is the well-known Dominant
Color Descriptor originating in ISO 15938, also known as
MPEG-7 standard (Ohm et al., 2001). It extracts a maxi-
mum of eight dominating colors from a given image, weights
those colors by providing their individual degree of influ-
ence via a percentage value and calculates a spatial distri-
bution throughout the image. We use the implementation
of the Caliph & Emir (Lux, 2009) image processing library
that still neglects the spatial distribution using standard pa-
rameters in its most recent revision. All image processing
operations are utilized within efficient multi-threaded video
processing chains of the AMOPA framework (Ritter, 2014;
Ritter and Eibl, 2011).

3.2 Probabilistic Run-length weighted Neighborhood Al-
gorithm

This approach is based on two assumptions. The first one
is that longer shots have a higher probability of containing a
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Indoor Outdoor Correct
Γ P R F1 P R F1 (%)
−11.0 0.849 0.776 0.811 0.429 0.550 0.482 72.27
−11.5 0.907 0.776 0.836 0.503 0.742 0.599 76.76
−12.0 0.890 0.640 0.745 0.387 0.742 0.509 66.41

Table 1. Experimental results of different log-energy thresholds (Γ)
for the indoor outdoor classification (Precision, Recall and F1).

searched instance than shorter shots. Let Π denote the tar-
get instance (shot number of the query) of a given sample
shot in the test collection. The second assumptions states
that there is a higher probability that similar object instances
are more likely to be contained in the neighborhood Ω around
Π, whereas the probability P∝∆(Π,ω)−1 decreases while en-
larging the distance between Π and a specific location ω ∈Ω.

Hence, the approach takes all shots in the neighborhood
around sample shots known to contain a searched instance,
weighting them by distance (number of intermediate shots)
and run-length to create an ordered list.

As mentioned before, a successful application of this ap-
proach requires prior knowledge about some shots contain-
ing a searched instance. In our runs, we used the four shots
given as example for each topic. Because information about
the originating sequences of the query shots were not given,
it was mandatory to retrieve them. This was accomplished
by utilizing lower-level methods of duplicate detection the-
ory. Accordingly, we employed a binary comparison of tiny
bitmap pictures from the topic sample clips with all previ-
ously extracted bitmap pictures of the shots from the dataset
(cf. Section 2.2). This method benefits from some speed-
ups by including the meta data from each video to preselect
a certain set of shots, or by loading this preselected set of
shots into RAM and executing all byte-by-byte-comparisons
in memory. Due to the compression differences between the
query format and the video footage, the sets did not contain
any complete identical pictures. That’s why the differences
of each two bytes at the same positions were calculated and
accumulated for the entire file. When this accumulated value
achieved a new maximum in comparison to the best already
calculated sum of another file or exceeded a certain threshold
(we used the length of the file multiplied by eight), the system
could move forward to the next file. This method allowed us
to identify the shot numbers of all 120 topic examples in the
entire video footage in less than 200 seconds, in sum within
a range of 0.16 to 27.52 seconds per shot (3 comparisons per
millisecond in average) on some mobile Core i5 laptop.

We found that two topics only contained example shots
from the development set. Thus we were not able to identify
shots for those cases in the test set. Heuristically, we used
a list of the longest shots in descending order to fill up the
result lists to 1,000 shots.

3.3 Indoor/Outdoor Detection on Audio

The indoor and outdoor classification of shots aims to in-
crease the precision in an interactive run. For example, a
human operator might reason that it is likely that the cell
phone instance search task might always be located outdoors
what could lead to additional constrains in the SQL statement
while retrieving the results from the database. In the initial
analysis of the development set a lower background noise in
most of the indoor shots has been perceived. This is reflected
in the log-energy feature between the spoken utterances of
the actors. However, there are many shots that last for less
than 2 seconds including just speech with no opportunity to
discriminate between indoor and outdoor.

We assume that a scene, consisting of more than one shot,
is either indoor or outdoor, and there is at least one shot in a
scene lasting long enough to analyze non-speech signals. In
this context, our approach for the indoor/outdoor classifica-
tion works as follows:

1. The indoor/outdoor classification of shots based on the
log-level feature and functional.

2. The indoor/outdoor classification on scene-level de-
pends on the number of indoor shots.

3. If one shot meets the indoor requirements, all other
shots in the same scene are considered as indoor.

The provided dataset for development in the challenge
consists of 1,997 Shots. To evaluate our approach 512 shots
were intellectually grouped into 25 indoor scenes (392 Shots)
and 10 outdoor scenes (120 Shots). We defined a training set
that consists of the rest of the samples whereas only appro-
priate samples were selected. We just used the ones that last
longer than two seconds in order to fulfill the requirements
of our approach, and thus to experimentally investigate the
appropriate threshold of the log-energy feature for the dis-
crimination process. Consequently, the number of training
samples varied in each conducted experiment.

We used the functionals minimum, range, mean, and
standard deviation of log-energy and evaluated different
classifiers. The Support Vector Machine (SVM) of LIB-
SVM (Chang and Lin, 2011) within WEKA (Hall et al.,
2009) performed best. The experimental results of our ap-
proach are shown in Table 1. It is obvious that the best F1
score for the classes indoor and outdoor is at −11.5 of the log-
energy yielding to a correctness of 76.76%. The choice of
samples for training based on the threshold is crucial as it can
be seen at the difference of 10.35% of correctness between
the thresholds −12.0 and −11.5. Finally, we selected the
model with the best correctness result and applied it within
our architecture on the actual test set of the challenge.
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Figure 3. Row 1: Sequence of keyframes. Row 2: Brightened
keyframes using histogram equalization. Row 3: Sequence of char-
acteristic colors extracted by k-means clustering. Row 4: Normal-
ization of the color channels to values 0, 128, and 255. Row 5: Sin-
gle outliers have been eliminated resulting in an emphasized scene-
to-scene transition.

3.4 Shot Composition and Advanced Dominant Color

The slightly different approach using Advanced Dominant
Color (ADC) is used to find semantic linked shots in direct
temporal connection. It was used to group related shots to
one scene. It is based on the assumption that related shots
which were filmed at the same location have a quite similar
overall coloring. This assumption is backed by the observa-
tion that the different but quite limited locations in a daily
soap are all designed in a special way to facilitate the recog-
nition for the audience, whereas the provided data set of the
BBC soap EastEnders seems to meet this prerequisites.

Figure 3 illustrates our approach. ADC is based on one
Dominant Color (DC) which is extracted from an image by
k-means clustering (MacQueen, 1967), but with exactly one
cluster. Therefor the most dominant color is extracted. This
process is limited to especially colorful colors meaning that
in RGB color space one of the three color channels is quite
different from the others in its value. This is also supported
by a color histogram spread on each channel. However, the
spread on the red channel is somehow limited to prevent a
red cast which would make the final result less useful. The
resulting RGB values of the DC are discretized to the three
values 0, 128 and 255 leading to only 27 distinct final colors.

However, in some shot/reverse shot-situations these over-
all colors may differ too much yielding to different ADCs.
There may be some different reasons for accidentally distinct
ADCs in a series of successive shots that could be eliminated
by using a smoothing technique.

4 Results

We submitted four different runs. Two interactive with a so-
phisticated approach and two automatic based on rather sim-

ple estimations. Both runs returned rather mediocre results
placing us in the lower-middle tier in comparison to other
participants this year.

4.1 Interactive Runs

As expected by the usage of the Dominant Color Descriptor,
resulting images had a color scheme similar to the queried
pictures. Despite downsampling the input, the results were
adequate. However, the setup did not necessarily find cor-
rect object representations, as toning of two different objects
can also match. To a certain point, problems like this should
have been absorbed by the spatial coherency value of the de-
scriptor, but the provided implementation seemed to struggle
calculating those values. Hence, the system had no informa-
tion about the structural behaviour of the picture, and object
detection was purely depending on the colors. We finished
with a Mean Average Precision of 0.037 for I E TUC MI 1
and 0.034 for I E TUC MI 2.

Due to our reduction and usage of in-database calculation
the runtime of the complete system was approximately half
the runtime of the initial video collection, which is a no-
table insight, since we only used a single Dual Quad-Core
Xeon 5472 system for computation.

4.2 Automatic Runs

Both fully automatic runs were based on the Probabilistic
Run-length weigthed Neighborhood Algorithm (PRNA) de-
scribed in Section 3.2 and the approaches concerning shot
composition and Advanced Dominant Color described in
Section 3.4. They were applied to the identified sample shots,
and by constraining its outputs to the shots identified by the
scene detection based on the ADC the SC for these exam-
ple shots in I E TUC MI 3 or on MPEG-7 descriptors on
I E TUC MI 4.

In contrast to the approach described above, the result lists
were not filled up by the list of the 1,000 longest shots, and
this default list was only returned when there were no other
results. The aim was to improve the precision over the recall
based pure PRNA approach. In the evaluation, we achieved
a MAP of 0.015 for run E TUC MI 3 and 0.017 for run
I E TUC MI 4 over the 27 evaluated topics. In contrast, run
I E TUC MI 3 scored the highest mean (Precision at total
relevant shots) of 0.047 among our submitted runs. Overall,
we were ranked in the lower mid-field in the fully automatic
runs.

5 Conclusions

We introduced an extensible system architecture to process
both subtasks of interactive and automatic runs using basic
audiovisual concepts, and an adaptable keyframe extraction
schemes based on a shot length distribution to vastly reduce
the amount of data to process. We demonstrated an effective
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way of MPEG-7 descriptor distance measure calculation by
using internal PostgreSQL database functionality.

A lightweight and easy to use UI allows faster judgement
and evaluation. We combined well-known visual MPEG-7
descriptors with the audio track to distinguish indoor and
outdoor scenes with respect to a given query for our inter-
active runs. Designing a framework representing an exten-
sive image processing workflow and collaborative evaluation
proved to be very effective despite mostly mediocre results.
The overall performance of this approach can be improved
by using additional visual descriptors, and by making use of
more sophisticated machine learning strategies. We fully ex-
pect better results by further development.

In contrast, our automatic runs are mainly based on sta-
tistical assumptions about the distribution of shots and re-
verse shots around the appearance of the query samples in
the video collection. Although hardly any image process-
ing algorithms were implemented, those runs exceeded our
expectations in terms of precision at least for the top 30 re-
sults (P30). We aim for a combination of those statistical
features and additional visual MPEG-7 descriptors together
with SIFT and bag-of-words models in our future work.

Using semantic features as additional ranking constraints
is a promising way of improving both visual feature extrac-
tion through search space optimization/minimization, and
overall relevance of the resulting set of shots. The search
of a given instance in large corpora will benefit from the ex-
traction and use of non-visual features and metadata. In order
to extend our framework in the future, we aim to pursue this
multimodal approach.
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