

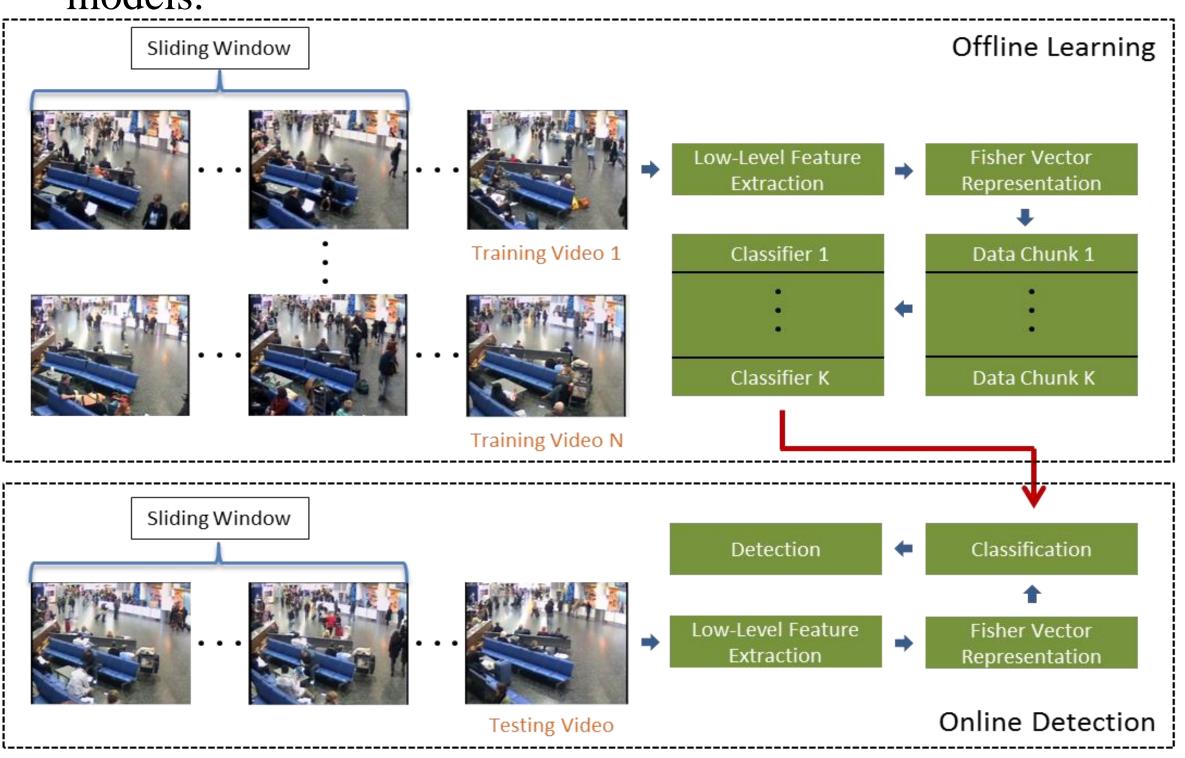
CCNY at TRECVID 2014: Surveillance Event Detection

Yang Xian[‡], Xuejian Rong[§], Xiaodong Yang[§], and YingLi Tian^{‡§}

[‡]Dept. Computer Science The Graduate Center, CUNY §Dept. Electrical Engineering
The City College, CUNY

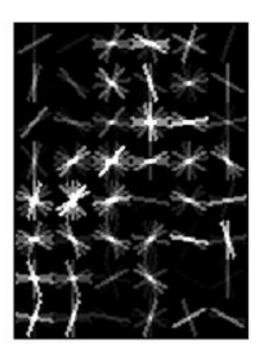
INTRODUCTION

- We present a specific action detection system for CellToEar task and a generic event detection system for the rest events of Surveillance Event Detection (SED).
- Our generic system consists of four components: (1) low-level feature extraction, (2) video representation, (3) learning event model, and (4) post processing, as shown in Fig. 1.
- STIP-HOG/HOF, DT-Trajectory, and DT-MBH are used as the low-level features to represent human actions. The camera and event specific hot regions are employed to eliminate a large amount of irrelevant points from background.
- We employ Fisher Vector for further feature descriptor, which shares the benefits of both generative and discriminative models.



CellToEar Specific System

Part Models Training



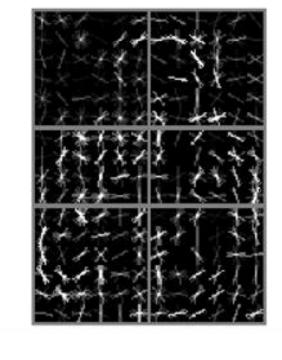
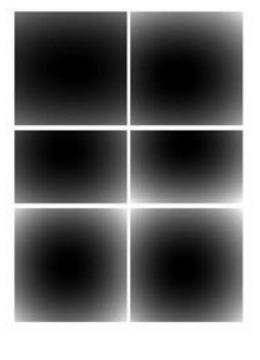


Figure 1: CCNY generic event detection system architecture.



(a) Coarse Root filter (b) Higher re

(b) Higher resolution part filters (c) Spatial models

• Models are trained for four scenes from different camera views, and the final training dataset contains ~15000 positive frames from *dev08* and ~6200 positive frames from *eval08*, with all bounding boxes manually labeled before.

Figure 2: Trained visual Deformable Part Models for CellToEar event.

Part Models based Detection

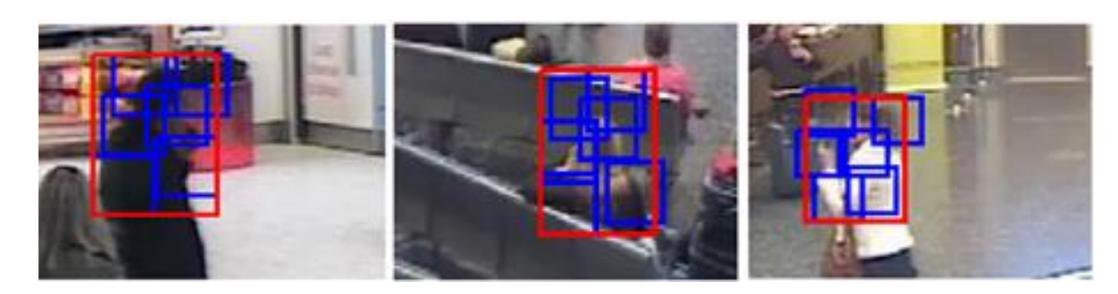


Figure 3: Initial detection bounding boxes including part models.

Generic System

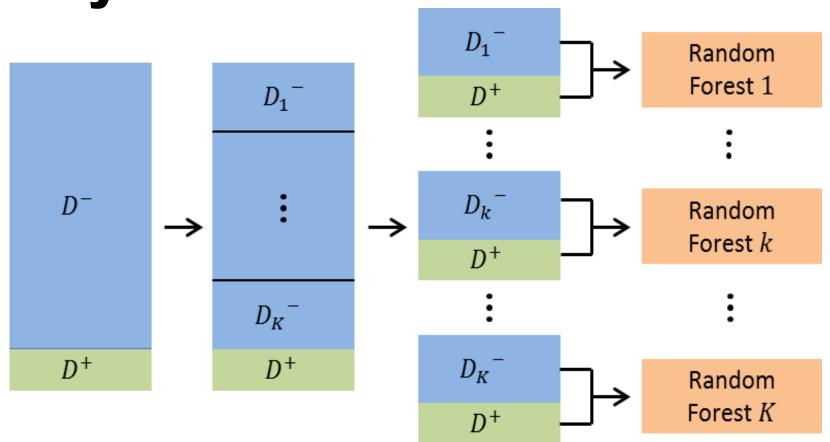


Figure 4: Illustration of data segmentation where within each data chunk a Random Forest is learned.

Video Representation

- 60-frame sliding window which strides in every 15 frames. Highly imbalanced data in different events.
- Three low-level features are extracted from each sliding window, each generates a corresponding Fisher Vector.
- Each Fisher Vector is fed into a group of learned Random Forests, following classification and decision-level fusion as Fig. 5. shows.

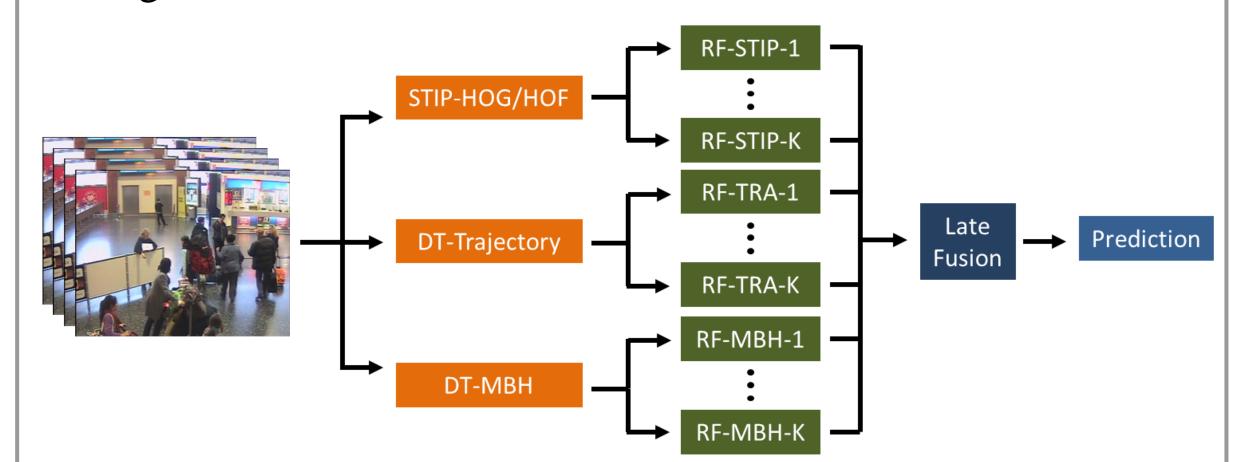


Figure 5: Illustration of late fusion in combining multiple low-level features.

Decision-level Fusion

• The decision-level fusion combines outputs of multiple classifiers to make the final prediction.

Post Processing

• Two positive predictions which have overlaps in their sliding windows can be merged together.

RESULTS

Comparisons between our system and the best systems in 2014 are listed in Table 2.

Event	Rank	ADCR of Other	CCNY Primary Run				
		Best Systems	ADCR	MDCR	#CorDet	#FA	#Miss
CellToEar	3	0.9921	1.0257	1.0005	0	56	54
Embrace	4	0.8113	0.9611	0.9510	14	136	124
ObjectPut	3	0.9713	1.0177	1.0005	1	46	289
PeopleMeet	3	0.8587	0.9966	0.9901	11	86	245
PeopleSplitUp	2	0.8353	0.8698	0.8594	36	232	116
PersonRuns	1	0.8301	0.8256	0.8122	13	175	38
Pointing	4	0.9998	1.0547	1.0005	19	171	776

Table 1: Comparisons between CCNY and TRECVID SED best systems in 2014.