VideoStory
At TRECVID 2014

Amirhossein Habibian, Thomas Mensink, Cees Snoek
MediaMill | ISLA, University of Amsterdam
Acknowledgement

This research is supported by the STW STORY project, the Dutch national program COMMIT, and by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center contract number D11PC20067. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.
Problem statement

Recognize and translate video events
Learning from few examples
Provide semantic interpretation of videos

Event: Attempting bike trick
Description: Crazy guy doing insane stunts on bike
Recognizing events

Representing videos as histograms of low-level features

Local descriptors
- Visual descriptors
 - SIFT, HOG, GIST, ...
- Video descriptors
 - MBH, STIP, ...
- Audio descriptors
 - MFCC, AIM, ...

Feature embedding
- Bag-of-words
- VLAD
- Fisher vector
- Audio-visual BoW

Problem: very high-dimensional and non-semantically

[Jiang et al., TRECVID 2010] [Natarajan et al., CVPR 2012] [Chen et al., MM 2013]
Recognizing and translating events

Representing videos as histograms of concept scores

Deep convolutional neural network

Local descriptors
- Visual descriptors
 - SIFT, HOG, GIST, ...
- Video descriptors
 - MBH, STIP, ...
- Audio descriptors
 - MFCC, AIM, ...

Feature embedding
- Bag-of-words
- VLAD
- Fisher vector
- Audio-visual BoW

Classification
- Attribute detection
- Concept detection

Problem: define, annotate and train concept classifiers

[Smith et al., ICME 2003] [Hauptmann et al., TMM 2007] [Merler et al., TMM 2012] [Ma et al., MM 2012]
Recognition and translation by embedding

Joint space where $x_i W \approx y_i A$
Explicitly relate training W and A from multimedia

$A = \text{Identity matrix}$ individual term classifiers
$A = \text{Projection matrix}$ select/group terms

[Rasiwasa et al., MM 2010] [Weston et al., IJCAI 2011] [Akata et al., CVPR 2013] [Das et al., WSDM 2013]
VideoStory: Embed the story of a video

Design criteria: learn W and A such that

- **Descripiveness:** preserve video descriptions
- **Predictability:** recognize terms from video content
Key observation: Compelling forces

Crazy guy doing insane stunts on bike
Why is this important?

Grouping terms:
 Number of classes is reduced

Training classifiers per group:
 More positive examples available per group

We can train from freely available web data
Key contribution: Joint optimization

Jointly optimize for descriptiveness and predictability

\[L_{VS}(A, W) = \min_S L_d(A, S) + L_p(S, W) \]

Hyperparameter: size of the embedding S

L_d Loss function for descriptiveness

L_p Loss function for predictability

VideoStory connects the two loss functions
VideoStory: Training

- Set of videos and their captions

- Encode video features x_i
 - Fisher Vectors of MBH [Wang ICCV’13]

- Encode video descriptions y_i
 - Bag-of-words of terms

- Train using *Stochastic Gradient Descent*
YouTube46K dataset

Videos and title descriptions from YouTube
46K videos, 19K unique terms in descriptions

Seeded from video event descriptions

Filters to remove low quality videos

Available for download: www.mediamill.nl
VideoStory: Event classifier training

VideoStory Training

Video and descriptions

VideoStory Algorithm

Event Classifier Training

Video

VideoStory Construction

S

Event Training

Labels

Model

Event classifiers:

SVM with RBF kernel
Datasets for evaluation

TRECVID Multimedia Event Detection 2013
56K videos - 20 events - 10 positives train videos

Columbia Consumer Video
9K videos - 15 events - 10 positives train videos

[Jiang et al. ICMR 2011][Strassel et al. LREC 2012]
VideoStory: Recognition and translation

Evaluation:
- Mean Average Precision
- Rouge-1
Experiment 1: Effect of Embedding

Frequent terms: train classifier for most frequent terms

Grouping first: first descriptiveness; then predictability

VideoStory: joint descriptiveness and predictability

VideoStory outperforms other embeddings
Experiment 2: Story Quality vs. Quantity

Expert10K: 10K TRECVID videos with expert descriptions

YouTube10K: 10K random subset of YouTube46K dataset

YouTube46K: 46K YouTube videos and descriptions

Web supervision on par with expert provided descriptions
Experiment 3: VideoStory translation

Getting a vehicle unstuck

Rock climbing

Predictions

Terms

water

people

drive

car
dump

snow

truck

mud

hang

dog

fail

climb

rock

wall

boy

indoor
Experiment 3: VideoStory translation

Evaluate on TRECVID MED

Ground-truth: provided descriptions
Measure with ROUGE-1

VideoStory outperforms predefined attributes
VideoStory at TRECVID
Features for training event classifiers

Example based event search (10Ex and 100Ex)

We train SVM with RBF kernel
VideoStory translation at TRECVID 2014

Translations for matching with event definition
Text based event search (OEx)
We use cosine similarity
Computational efficiency

Fast feature computation
Convolution and multiplication over pixel values
~54 secs per video mostly spent on video decoding

Fast event classifier train and test
Training < 60 s per event
Classifying one test video only 0.015 s
1K-dimensional video representation
Efficiency: feature computation

Time to compute the features for MED14Full
Takes 259 hours on a single machine with 16 cores
Event recognition accuracy

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Method</th>
<th>MED 13</th>
<th>MED 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>100Ex</td>
<td>CNN features</td>
<td>.350</td>
<td>.280</td>
</tr>
<tr>
<td></td>
<td>VideoStory - CNN</td>
<td>.389</td>
<td>.300</td>
</tr>
<tr>
<td>010Ex</td>
<td>CNN features</td>
<td>.198</td>
<td>.167</td>
</tr>
<tr>
<td></td>
<td>VideoStory - CNN</td>
<td>.243</td>
<td>.200</td>
</tr>
<tr>
<td>000Ex</td>
<td>VideoStory - CNN</td>
<td>.124</td>
<td>.037</td>
</tr>
</tbody>
</table>

Competitive accuracy with a single feature only
Conclusions

VideoStory a semantic multimedia embedding

– Jointly optimizes descriptiveness & predictability
– Training event classifiers from few examples
– Translate videos to textual description

Effectively and *efficiently* recognizes events

Adds *meaning* to deep convolutional networks

Thank you!