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1 Summary

In this notebook paper, we present an overview and results analysis of our system
designed for TREVID 2015 [1] Multimedia Event Detection (MED) task. Moti-
vated by the great success of deep learning, we focus on exploiting various deep
features to capture visual appearance and temporal dynamics in video clips. In
order to fully utilize knowledge from existing large-scale image and video bench-
marks, our system also incorporates high-level semantic features generated by
pre-trained Convolutional Neural Networks. Then we performed classification
with SVMs using different features and average the results carefully to obtain
the final prediction scores. We submmited results for full evaluation of both Pre-
Specified (PS) and Ad-Hoc (AH) sub-tasks in the 010Ex training condition. Our
runs are submitted below.

Table 1. Summary of submitted runs for TRECVID 2015 MED

AH
baseline-1 IDT + MFCC + VGG19-fc6 + VGG19-fc7 + C-20K + C-233
contrast-1 VGG19-fc6 + VGG19-fc7 + C-20K + C-233

PS

baseline-1 IDT + MFCC + VGG19-fc6 + VGG19-fc7 + C-20K + C-233
contrast-1 IDT + MFCC + VGG19-fc6 + VGG19-fc7 + LSTM + C-20K + C-233
contrast-2 IDT + MFCC + VGG19-fc6 + VGG19-fc7
contrast-3 VGG19-fc6 + VGG19-fc7 + C-20K + C-233
contrast-4 IDT + MFCC

2 System Overview

In this section, we elaborate the technical components of our system. First, we
describe the adopted features as well as their corresponding encoding strate-
gies. Then we introduce the classifiers for model training and different fusion
approaches.



2.1 Feature Representation

In TRECVID 2015, we adopt three sets of features in our system to capture
the rich multimodal information in videos, including traditional features, deep
features and concept representations. All the features used in our MED system
are summarized in Table 2 and the detailed descriptions are given below.

Table 2. Features adopted in our MED system

Features

Traditional Features
IDT (MBH, HOG, HOF)
MFCC

Deep Features VGG19-fc6, VGG19-fc7, LSTM

Concept Feature C-20K, C-233

Traditional Features
– Improved Dense Trajectory (IDT): We extract the state-of-the-art improved

dense trajectory features [2], which exhibit top-notch performance on action
recognition tasks. Along with the densely extracted trajectories, three features
are computed: HOG, HOF, and MBH. We first reduce the dimension of HOG,
HOF and MBH descriptors by a factor of two using Principal Component Anal-
ysis (PCA). Then these features are further quantized respectively using the FV
representation with the vocabulary size being 256.

– MFCC: In addition to the above visual features, audio features can provide
complementary clues. For this, we adopt the well-known Mel-Frequency Cepstral
Coefficients (MFCC). It is first computed over each 32ms time-window (with
16ms overlap) of the soundtrack and then all the descriptors are quantized into
a single BoW feature representation.

Deep Features
– VGG19-fc6 and VGG19-fc7: Inspired by the great success of CNN, we

adopt VGG19 model proposed by Simonyan [3] in our system. Compared to
AlexNet, VGG19 not only further reduces the size of convolutional filters and
the stride, but more importantly, it also extends the depth of the network. With
this much deeper architecture, VGG19 possess strong capabilities of learning
more discriminative features and the high-level final predictions. It can produce
a 7.1% top-5 error rate on the ILSVRC-2012 validation set. In order to increase
the generalization ability of the VGG19 model, we finetune the model using the
full ImageNet dataset, which consists of 14 million images annotated into 20K
classes. Given a video clip, we extract the outputs from the two fully-connected
layers (i.e., VGG19-fc6 and VGG19-fc7) of each frame and then average them
frame-level features into video-level representations.

– LSTM Feature: In order to further model the long-term dynamic infor-
mation that is mostly discarded in the spatial CNNs, we utilize our recently
developed LSTM model, as shown in Figure 1. Different from a traditional Re-
current Neural Network (RNN) unit, the LSTM unit has a built-in memory cell.
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Fig. 1. The structure of the LSTM network.

Several non-linear gates are used to govern the information flow into and out
of the cell, which enables the model to explore long-range dynamics by taking
the feature representations from CNN at each time step. Due to time constraint
of the evaluation, we directly adopt LSTM model trained with another video
dataset (the UCF-101 dataset) and use the average output from all the time-
steps of the last LSTM layers as the feature (512-d).

Concept Features
– C-20K: Since the softmax output of our finetuned VGG19 model demon-

strates the probability of the 20K objects in a frame, we adopt this as our high-
level semantic concept detector in our system. For each key frame in a given
video, we obtain a 20,574-d concept score with the trained model and frame-
level scores are then averaged to generate a video-level concept feature vector
for further classification.

– C-233: We trained 233 concept detectors on the newly released Fudan-
Columbia Video Dataset [4] using a VGG19 CNN model. Given a video clip, we
obtain the 233 concept detector responses using the softmax layer of the CNN
model. Then, a video level concept representation is obtained by average pooling
the scores of all frames.



2.2 Classification and Fusion

To train event detection models, we employ two different types of classifiers in
our system:

– Linear SVMs: To enhance classification performance, we first perform early
fusion with the appearance feature and motion feature by concatenating
them into a long vector. Since the concatenated vector is discriminative
enough in the high-dimensional space, we adopt linear SVMs with C fixed
to 100 to train the model.

– χ2 SVMs: For MFCC audio feature, deep features and concept scores, we first
map them into χ2-kernel separately. Then, we train independent classifiers
for each of these features.

With multiple classifiers, each video clip is accordingly associated with multiple
output scores, which are then fused to compute the final prediction.

3 Results and Analysis

Our MED system is designed to combine multiple feature representations to fully
model multiple clues in videos. We submitted 2 runs for AH task and 5 runs for
the PS task in order to investigate the effectiveness of different features.

Figure 2 shows the results of all the submissions. The official performance
measure is infoAP200 for both AH and PS tasks. For AH task, we can see
that traditional features are highly complementary with features extracted from
deep models (i.e., deep features and concept features). For PS task, as a first
trial, we incorporate LSTM features trained on UCF-101 in order to capture
the long-term temporal dynamics, which promote the performance by 0.6% (PS
baseline-1 vs PS-contrast-1). We claim that if the LSTM models are trained
on large video corpus, the features can be more discriminative and will offer
better performance. Comparing PS baseline-1 and PS contrast-2, we found that
concept features can slightly improve the performance. In addition, we can see
that the deep learning based features (PS contrast-3) are significantly better
than the conventional features (PS contrast-4), which corroborates the fact that
deep learning features trained on ImageNet usually posses high generalization
ability [5].
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Fig. 2. The results of our submissions.
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1 Summary

We present an event detection system for the SED task of TRECVid 2015[1].
Its simple framework is challenged with three events, CellToEar, Pointing and
ObjectPut, which are the most difficult events to detect in SED. The proposed
system uses STIP-HOG/HOF as the low level feature, and Fisher Vector en-
coding to represent each spatio-temporal sub-volume extracted by the sliding
window approach. Linear SVM is used for event detection. Our results (mini-
mum DCR metric) are compared to the results of other teams.

2 Introduction

The TRECVid SED task requires detecting observable events in real surveillance
video sequences taken in London Gatwick International Airport[1]. It consists of
two parts, retrospective SED and interactive SED. The former performs off-line
event detection and the latter allows manually filtering of the system’s result
in 25 minutes. We built the system for retrospective SED. The target events
in SED are PersonRuns, Pointing, CellToEar, ObjectPut, Embrace, PeopleMeet
and PeopleSplitUp; Pointing and CellToEar are the most difficult events to de-
tect because they demonstrate less change in appearance and motion. We fo-
cus on these events and, to overcome these difficulties, design a framework on
the sliding window approach, where window size is adaptively changed for each
event. We also employ the commonly used feature, STIP-HOG/HOF, as a low
level feature. Its superiority has been demonstrated in many action recognition
studies. We tested our system in three events, CellToEar, Pointing, and Object-
Put. Our system did not provide a significant improvement over past results but
our evaluation results are comparable to the results of other teams in terms of
minimum DCR metric.

3 Overview

We overview the proposed system in Figure 1. It consists of two main compo-
nents, model learning and event detection. In model learning, the video sequence
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Fig. 1. Our system overflow.

is segmented into detection units by sliding windows and STIP-HOG/HOF is
extracted as the low level feature. To represent the detection units, we employ
the Fisher Vector encoding technique. Linear SVM is trained using these units
as samples. In event detection, we read the video sequence from the first frame
by sliding windows. STIP-HOG/HOF is extracted from each window and coded
by Fisher Vector encoding. Linear SVM accepts the units as input and outputs
a sequence of likelihood scores. The positions of events and decision scores are
decided by processing this likelihood sequence.

4 Video representation

We segment the video sequence into detection units using fixed length, l, and
fixed step size by using the sliding window approach. Window size l is set by
calculating the average event duration and step size is set to l/10. The STIP
detector[2] with HOG/HOF feature is commonly used to capture human motion
and moving objects. In this paper, we employ it as the low level feature and
employ PCA to reduce its dimension from 162 to 80. To represent each unit, the
Fisher Vector encoding[3] technique is used.

5 Model learning

We use Linear SVM[4] for event detection due to its lower computation cost. To
train a detector, such as Linear SVM which can predict labels with high accuracy,
a large dataset with annotated labels is needed. However, such datasets are
usually not available for the SED task and real-world applications. To augment
what labeled samples are available, we consider a detection unit as a positive
sample if more than 50% of its frames have a positive label. The negative dataset
is made of samples randomly produced from the units without positive labels.
We make as many negative samples as there are positive ones. The penalty score,
C, of Linear SVM is decided by grid search using the training data. All elements
of encoded features are normalized to the range of -1 to 1.



6 Event detection

In detecting events, we read the video sequence from the first frame by the
sliding window approach. As in model learning, the STIP-HOG/HOF feature
is extracted and encoded by Fisher Vector encoding. Then, a sequence of like-
lihood scores is generated by using encoded features as inputs to the trained
Linear SVM. In post processing, we decide the positions of predicted events and
calculate the decision scores from the likelihood scores. Consecutive units whose
likelihoods exceed 0 are treated as one prediction event. For each prediction, the
average of the likelihood scores is calculated and used as the decision score.

7 Results

Table 1. Results of event detection (mDCR-score). the left column is actual DCR. the
right is actual DCR.

aDCR mDCR

CellToEar 1.5153 1.0006
Pointing 3.0253 1.0006

ObjectPut 4.7264 0.9965

In training the model, we used all data and annotations provided by NIST.
Window size, l, was set at 16, 20, and 10 when making the positive dataset and
the penalty score, C, in Linear SVM was set at 212.2, 2−5, 215, respectively, for
CellToEar, Pointing, and ObjectPut. Table 1 shows our results for the EVAL15
data. We conjecture that the proposed system offered only low precision because
it uses Fisher Vector encoding which eliminates the spatial information of the
active subjects. Localizing the active subjects might improve the prediction score
of these two events.
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Smeaton, Georges Quéenot, and Roeland Ordelman. Trecvid 2015 – an overview
of the goals, tasks, data, evaluation mechanisms and metrics. In Proceedings of
TRECVID 2015. NIST, USA, 2015.

2. Ivan Laptev. On space-time interest points. International Journal of Computer
Vision, Vol. 64, No. 2-3, pp. 107–123, 2005.

3. Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel
for large-scale image classification. In Computer Vision–ECCV 2010, pp. 143–156.
Springer, 2010.

4. Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
Liblinear: A library for large linear classification. The Journal of Machine Learning
Research, Vol. 9, pp. 1871–1874, 2008.


