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Abstract. This contribution presents our second appearance at the TRECVID Instance Search task (Over
et al., 2015; Smeaton et al., 2006). We participated in the evaluation campaign with four runs (one interactive
and three automatic) using audiovisual concepts. A combination of different methods is used in every run.
Our basic approach is based on probabilistic assumptions about the occurrences of instances. A deep learning
convolutional neural network (CNN) is used in connection with the classification of filming locations and
the analysis of audio tracks. The extraction of SIFT features is combined with K-Nearest Neighbors (KNN)
clustering and matching to search for instances. In addition, we applied a sequence clustering method that
incorporates visual similarity calculations between all corresponding shots in the omnibus episodes provided.
Throughout all approaches, we make use of our adaptable and easy-to-use keyframe extraction scheme from
the previous evaluation period (Ritter et al., 2014).

1 Structured Abstract

1. Briefly, list all the different sources of training data used
in the creation of your system and its components.

• For training issues, we solely used the given master shot
reference, and the audio and video tracks of the first
video with ID 0 from the provided BBC EastEnders
video footage.

2. Briefly, what approach or combination of approaches did
you test in each of your submitted runs?

• Within the first interactive run I E TUC 1, we are using
CNN & visual Bag-of-Word as well as SIFT & KNN
based approaches in combination with audio-based in-
door/outdoor detection and a probabilistic shot compo-
sition (PRNA) that is based on around 1.1 million ex-
tracted keyframes and thus shrinks the keyframe pool
with respect to this years queries to around 18,000 avail-
able frames.

• Our first automatic run F E TUC 2 combines CNN &
visual Bag-of-Word approaches with audio analysis of
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the three different classes indoor, outdoor, and crowd &
machine.

• The automatic run F A TUC 3 combines SIFT features
with K-Nearest Neighbors (KNN) matching and deals
as a baseline.

• Our last automatic run F A TUC 4 combines our ap-
proach to partially semantic sequence clustering (SC) as
input to the Probabilistic Run-length weighted Neigh-
borhood Algorithm (PRNA) from the previous year that
is built on probabilistic assumptions about the occur-
rences of instances.

3. What if any significant differences (in terms of what mea-
sures) did you find among the runs?

• We present an adaptable and easy-to-use keyframe ex-
traction scheme in order to reduce the large amount
of 42 million frames to 1.1 million keyframes that
were used for indexing or instance comparison at
I E TUC MI 1.

• As expected, and in terms of MAP, there is a significant
difference of more than 13% between the interactive and
the best fully automatic run.
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• The results of the run F A TUC 4 with SC & PRNA are
promising within Precision at rank 30 (P30). Since the
sequence clustering did not finish, some optimization
potential is left to increase the resulting scores.

4. Based on the results, can you estimate the relative con-
tribution of each component of your system/approach to its
effectiveness?

• The reduction scheme of extracting representative
keyframes via preprocessing or even SC & PRNA is
crucial to an efficient further processing.

• I E TUC MI 1 and F A TUC 3 showed reasonable re-
sults for topics containing sharp edges using SIFT fea-
tures.

• The usability of our interactive GUI was significantly
improved while allowing to review approximately 3,500
instance candidates on average per topic within the eval-
uation time frame leading to fast rejections of a large
number of false positives.

5. Overall, what did you learn about runs/approaches and
the research question(s) that motivated them?

• The SC & PRNA method seems to be an usable heuris-
tic for finding a set of new shots containing an instance
based on some detected samples in the direct or indi-
rect neighborhood, especially to boost the top 5 result
entries at a Precision of almost 40%.

• SIFT features deliver promising results for topics with
specific properties.

• An appropriate ranking algorithm needs to be devel-
oped in order to create stable results in the first 1,000
appearances above P(30). Additional preliminary tests
with similarity measures like PSNR, structured simi-
larity index and histogram correlation indicated insuffi-
cient ranking capabilities while being applied to 75 mil-
lion image patches of the size 48×48 and thus were dis-
continued. Incorporation with machine learning meth-
ods might solve these aspects.

The remainder of the paper is organized as follows: Sec-
tion 2 provides a general view about the basic concepts and
more common components of our system architecture and
the underlying workflow for both run types. The specific al-
gorithms that were used within the system, are described in
section 3. Remarks regarding the official evaluation results
are given in section 4 followed by some conclusions in sec-
tion 5.

2 System Architecture

The following section describes the overall system architec-
ture and their components as well as the software and toolk-
its used to accomplish the instance search task. The prepro-
cessing steps and keyframe extraction process applied to the

original video footage and sample queries of the topics are
discussed in section 2.1. In the section 2.2, the tools used
for feature extraction and classification of filming locations
based on audio tracks are illustrated. Our approach to deep
learning is described in section 2.3. Another methods that
are based on SIFT features and the MPEG-7 feature extrac-
tion library are described in section 2.4 and 2.5, respectively.

2.1 Preprocessing and Keyframe Extraction

Our different approaches for feature extraction demand an
abundant preprocessing on the given data. The underlying
video collection from the BBC EastEnders series consists
of 244 MPEG-4 omnibus video files each containing four
episodes of around 30 minutes plus short additional video
sequences like advertisements. As the data collection for
the task Instance Search (INS) was maintained, we mostly
retained the sequence of preprocessing steps described in
our report from the previous TRECVID evaluation campaign
(Ritter et al., 2014).

We used the already built collection of 471,526 shots ac-
cording to the given master shot reference table. Due to
the anamorphic format provided, we applied deinterlacing
routines and a pixel aspect ratio correction to square pixel
(resulting in a resolution of 1,024× 576 pixel by utilizing
FFMPEG1. To further reduce the information that needs to
be processed by our image processing chains, we decided to
extract representative frames from each shot that we refer to
as keyframes, according to our adaptive keyframe extraction
scheme from last year; see Figure 2 in (Ritter et al., 2014).
By selecting up to five frames per shot, the method is capa-
ble of reducing the number of frames from 42 million to 1.15
million. Instead of extracting full size images, we cropped
each image at its full resolution by 48 pixels in horizontal
and 32 pixels in vertical direction resulting in a resolution
of 928×512 pixels. This is expected to reduce or even pre-
vent statistical corruptions in the latter feature extraction pro-
cesses by black borders or other artifacts at the margins of the
pictures.

As the query images and the corresponding masks of the
test set were also given with an anamorphic equalization of
pixels, we stretched them to squared pixels, too. This re-
sults in both query and mask ending up with the same as-
pect ratio as the index pictures in the corpus. When finished,
we process the masks with a customized MATLAB func-
tion which delivers the coordinates and size of the bounding
box that surrounds the marked white space which denotes
the searched object in the full-size query image. As a final
step, the coordinates are being mapped to the original picture
to provide cut out object patches resulting in query images
containing the searched object and a small part of the sur-
rounding environment.

1http://www.ffmpeg.org, 06/02/2015
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For audio processing, we also used the same collection of
audio-only versions of all shots, which were created at sam-
pling rates of 16 kHz mono channel in 16 bit PCM format.

2.2 openSMILE & Weka

The openSMILE feature extraction tool (Eyben et al., 2013)
contains general audio signal processing functions which
extract several speech- and music-related features. The
Low-Level Descriptors (LLDs) as well as the statistical
functionals can be calculated with this tool. The LLDs
include energy, spectral, cepstral (Mel Frequency Cep-
stral Coefficients—MFCC) features as well as logarithmic
harmonic-to-noise ratio (HNR), spectral harmonicity, and
psychoacoustic spectral sharpness. The statistical function-
als contain for example means, extremes and percentiles. We
used the openSMILE tool to extract large features from audio
tracks of sample videos in order to classify the shots accord-
ing to their filming locations.

The Weka toolkit (Hall et al., 2009) is a machine learning
and data mining software which we used for the classifica-
tion of filming locations based on audio features. Therefore,
a series of classifiers that have shown promising results for
classification in the literature were selected.

2.3 Deep Learning

Our approach of deep learning is based on Convolutional
Neural Networks (CNN) and consists of three main compo-
nents:

• The generation of training data sets.

• The training of the convolutional neural net.

• The classification of the entire BBC EastEnders corpus.

We assembled our training data with Python and FFMPEG
scripts using the extracted keyframes mentioned above. The
NVIDIA Deep Learning GPU Training System (DIGITS)2

provided us with a front end for CNN training and quick
screening and testing. Based on the deep learning frame-
work Caffe (Jia et al., 2014), DIGITS is also implemented
in Python. We run the training process on a single Linux
machine with one NVIDIA GTX 980 graphics card in GPU
mode. We used the same host for the classification pro-
cess based on a customized Caffe implementation. We used
OpenCV (Bradski, 2000) and a simple LibSVM implementa-
tion with Python bindings to support the process of image
classification with additional visual Bag-of-Words (BoW)
training.

2.4 OpenCV SIFT & KNN

The approach designed for the automatic run is shown in Fig-
ure 1. The basic pipeline from Content-Based Image Re-

2https://developer.nvidia.com/digits, 06/15/2015

trieval (CBIR), i.e. preprocessing, processing, and postpro-
cessing of the given content is followed to develop this ap-
proach. In addition to the aforementioned keyframe extrac-
tion process (see section 2.1) from the given video data as
preprocessing step, the keyframes are further resized by half
into a size of 464× 256 pixels on the fly. Afterwards, we
extract the widely used Scale Invariant Features Transform
(SIFT) features from the resized keyframes and also from
bounding box regions of query topics. As the SIFT features
are computationally expensive to apply to this very large
scale database, the feature extraction from resized keyframes
greatly accelerates the extraction process.

Unlike our last year's approach using a database as the
main repository for storing features which had significantly
helped in performing faster in-database calculations using
User Defined Functions (UDF), our approach in this year
stores the features and descriptors in normal text files. Be-
cause of choosing SIFT features with 128-dimensional de-
scriptions around each keypoint, a simple way is to use open
source OpenCV SIFT implementation and its K-Nearest
Neighbors (KNN) searching and matching functions that are
utilized rather than handling these extracted features in any
relational database. The keyframes with their video shot
ID numbers and their matching scores for each query topic
are stored in text files each containing 1,145,774 entries. In
the postprocessing step, the keyframes with high scores are
sorted in descending order to retrieve the first most relevant
1,000 video shot IDs.

2.5 MPEG-7 LIRE Library

For the calculation of the MPEG-7 visual descriptors, we
used an open source implementation for C# of the LIRE li-
brary (Lux and Chatzichristofis, 2008).

3 Methods

Different methods are used this year for the task of instance
search. An approach is based on probabilistic assumptions
about the occurrences of instances is described in section 3.1.
The recognition of filming locations based on classification
of audio signals is illustrated in section 3.2. The section 3.3
presents the deep learning approach based on the CNN. The
approach based on extraction of SIFT features and KNN is
described in section 3.4 and the sequence clustering based
on video segmentation in section 3.5.

3.1 Probabilistic Run-length-weighted Neighborhood Al-
gorithm (PRNA)

As already indicated by the name, this approach is rather
based on statistics than on image processing. It is built up
on two assumptions:
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Figure 1. Our workflow for using SIFT and KNN classifier.

1. Longer shots tend to be accompanied by containing a
higher probability of a searched instance than shorter
shots.

2. Let Π denote the target instance (shot number of the
query) of a given sample shot in the test set. Simi-
lar object instances are more likely to be contained in
the neighborhood Ω around Π, whereas the probabil-
ity P∝∆(Π,ω)−1 decreases while enlarging the distance
between Π and a specific location ω ∈Ω.

Hence, this approach takes all shots in the neighborhood
around sample shots known to contain a searched instance,
weighting them by distance (number of intermediate shots)
and run-length to create an ordered list. If there are no avail-
able samples in the test set or there are not enough shots
connected to the sample shots, the second assumption be-
comes invalid. Hence, only the first assumption is taken into
account by heuristically using a list of the longest shots in
descending order to fill up the result lists to 1,000 shots.

3.2 Audio Processing

The recognition of indoor/outdoor scenes is very important
in several areas, for example, content based image retrieval
and digital photography. The techniques of image process-
ing, such as edge analysis in images, can be used to clas-
sify indoor and outdoor images (Payne and Singh, 2005).
The acoustic signal classification can also be used to de-
tect indoor and outdoor scenes, since properties of audio
signals which are generated during filming differ between
indoor/outdoor locations. The audio-based indoor/outdoor
detection has been previously used in combination with im-
age processing techniques for instance search (Ritter et al.,
2014).

3.2.1 Acoustic Classes

The shots of the development database were categorized to
32 different locations according to filming locations. The lo-
cations comprise Albert Bar, Beale Outside, Betting Office,
Bridge Street Cafe, Carter Bedroom, Carter Livingroom,
Dots Kitchen, Market, Park, Walford East Station Outside,
Launderette, Mitchell's Car, etc. There are different num-
bers of shots in every location in the development database.
The minimum and maximum number of shots is 5 and 175,
respectively. Several acoustic signals were detected in the
audio tracks of sample videos such as speech, music, back-
ground music, background noise, baby crying, cutlery, ma-
chine, footstep, opening/closing doors, and birds sounds as
well as roadway and street noise. The audio-based classifi-
cation of the 32 locations is difficult, since audio tracks in
every location have overlapping sounds. For example, there
are speech signals, music and background noise in a bar or
cafe. Preliminary detections of single locations did not pro-
vide crucial information. Therefore, we regrouped locations
according to properties of audio signals into four acoustic
classes:

• Crowd: Albert Bar, Bridge Street Cafe,

• Indoor: Betting Office, Carter Bedroom, Carter Livin-
groom, Dots Kitchen,

• Outdoor: Beale Outside, Market, Park, Walford East
Station Outside,

• Machine: Launderette, Mitchell's Car, etc.

The number of shots is in crowd (242), indoor (1,081), out-
door (394), and in machine (118). We used only 115 shots
in every class as a balanced data set for training. The au-
dio tracks of sample shot videos were extracted with the
WinFF/FFMPEG tool. The audio tracks are downsampled
to a sampling rate of 16 kHz and 16 bits per sample.
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3.2.2 Feature Extraction and Classification

We assume that the type of speech differ according to a
certain location (e.g., shouting in a bar or whispering in a
park). Therefore, our approach for location discrimination
is rather related to the actor's voices and its paralinguistic
features than to background noise. The extracted features
on shot-level are the baseline feature set of the Computa-
tional Paralinguistics Challenge (ComParE) (Schuller et al.,
2013). The feature set contains 6,373 features of LLDs and
their statistical functions. The features were extracted using
the openSMILE toolkit with the corresponding configuration
file.

It is known that feature selection methods can lead to
promising results. There are two main approaches: wrap-
pers and filters. Wrapper methods from a machine learning
perspective can outperform a classifier by evaluating subsets
of features but may lead to overfitting. A filter method in
contrast uses a metric to rank features and criteria for the se-
lection. In this work, we prefer the second approach with a
discriminant analysis and a ranking by computing the cor-
related adjusted T-Scores (CAT) (Ahdesmki and Strimmer,
2010) between the group centroids and the pooled mean. Ad-
ditionally, we assigned a threshold of 50 for the number of
the top ranked features in which predominantly MFCC based
features are associated with 66%.

Preliminary experiments were conducted by using the pre-
pared development set with the four assigned labels and the
proposed feature sets. The goal of the experiments was to de-
termine a suitable feature set with its classifier method. The
following machine learning algorithms with default values
from the Weka toolkit were applied:

• SMO (support vector machine)

• J48 (decision tree)

• BayesNet (bayes network)

• Random Forest (forest of trees, random inputs)

3.2.3 Audio Classification Results

As a metric we used the unweighted average recall (UAR) in
a 10 fold cross-validation as shown in Figure 2. It can be seen
that the feature selection method increases the performance
for all chosen classifiers. The highest difference could be
reached for the BayesNet classifier with 22.2% to a value of
71.3%. However, this result is equal to the SMO without
feature selection. The best performance in the experiment
was achieved by the SMO including feature selection with
an UAR of 76.5%. Finally, this constructed model as well as
the selected features were applied on the test set to contribute
location discrimination as indicators.

Figure 2. Experimental results of the UAR by applying different
machine learning algorithms in connection with the ComParE fea-
ture set and the top 50 ranked features.

3.3 CNN & BoW

In the following, the data set and steps for training and clas-
sification of instances using available deep learning frame-
works are described.

3.3.1 Extending the Data Set

Generating good data sets for CNN training is crucial and
massively impacts the outcome and success of image clas-
sification. Those sets of training images must cover a wide
variety of instances for each class and often consist of hun-
dreds of images. The given set of examples from the instance
search task only contained four different images that are in-
sufficient for successful deep learning and classification. We
had to find a way to improve the variety of the training data
and boost the number of example images without interfer-
ing manually. Therefore, we identified the exact frame of the
given topic images and extracted additional ten frames before
and after the initial occurrence of that topic example image
(less if the source shot consists of a small number of frames).
We used the given mask files to find the important region in
each extracted frame, expanded the mask by 10% and nor-
malized the cropped region to squares of 256× 256 pixels.
Our final training set contained 30 categories (=30 topics)
with a total amount of 1,711 images. During the CNN train-
ing process 453 images (20%) were used for validation and
116 images (5%) were used for testing. Although some cat-
egories of our training data set contained examples without
the relevant instances due to pans and zooms in the original
shot (see Figure 3), results of the classification of the exam-
ple episode 0 were promising, as almost instances from the
previous TRECVID evaluation period were contained in the
top 5 classification results.

3.3.2 CNN & BoW Training

Our trained image classification model uses the GoogLeNet
(Szegedy et al., 2014) approach of network convolutions at a
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Figure 3. Our training data set for topic 9133.1 (lava lamp) con-
taining the normalized crop region of the mask of the given example
frame as well as the ten leading and trailing frames taken from the
same shot.

base learning rate of 0.01. We used the Nesterov accelerated
gradient as solver. The trained network showed significant
improvements in classification accuracy after the 10th epoch
and finished with at least 97% accuracy in class prediction
for the top 5 results from the tested images.

We followed a very basic approach for the extraction of
visual words from the EastEnders episodes. Based on SIFT
features (Lowe, 2004), a support vector machine (using the
LibSVM library) was trained with 800 visual words sepa-
rated by k-means clustering (MacQueen, 1967).

3.3.3 Classification

We performed the keyframe classification of the EastEnders
episodes on the whole image as well as on extracted sub-
images (patches). For performance reasons, we divided ev-
ery keyframe into a 3×2 grid resulting in six patches. We
did not uses sliding windows to reduce computation time.
In order to avoid distortions, all patches were normalized to
squares of 256× 256 pixels. Every patch of one keyframe
was classified with a score for each of the 30 categories.
Only the highest rated patch was chosen as the salient part
of the keyframe most likely to contain the wanted object in-
stance and representative sub-image for one category. This
approach is backed by the visual BoW classification based
on SIFT matching performed on the whole source keyframe.
Although we only used one class classification with no con-
fidence rating, this approach improved our results especially
for object instances with clear outlines. All classification
scores were saved in a XML file for further retrieval.

3.3.4 Parsing Results

All of our CNN classification results were stored in XML
files in order to add other layers of classification, sorting and
rule-based ranking. The most important additional classifi-
cation approach utilized the acoustic signal analysis. The de-
scription of the environment of wanted instances was likely
to improve the overall instance search results when combined
with the CNN classifications. For that, we retrieved the audio

classification of every subtopic from the audio signal analy-
sis and calculated an additional score representing the “noise
activity” (e.g. “indoor” classification = low noise activity =

low score) in those example shots. This score was later used
to determine shots from the entire collection that show simi-
lar noise characteristics and are therefore likely to contain an
instance (e.g. a lava lamp is more likely to be placed indoors,
although image classification could detect otherwise).

We used additional rule-based constraints to reduce the
number of false positive detections. For that, we automat-
ically analysed differences in patch scores, the top 3 cate-
gories of CNN classification of each shot, average scores of
all topics combined and multiple deviations from that. All
additional measures were stored in an index, which facilitate
the retrieval of varying numbers of final results and, most
important, rank those results based on a combination of all
measures.

3.4 SIFT & KNN

This approach is based on OpenCV SIFT features and KNN
matching functions. SIFT appears as one of the most in-
fluential scale invariant features being used in wide vari-
ety of publications in instance search tasks during recent
years which indeed yielded to promising results. The SIFT
features are extracted from 1,145,774 resized keyframes of
464×256 pixels and stored in text files in OpenCV file stor-
age format, i.e. in the YAML format structure with the same
keyframe names. That means each resized keyframe is rep-
resented as a text file with SIFT features. During the ex-
tracting of SIFT features using OpenCV, there is an oppor-
tunity to select the number of keypoints to be detected and
described. A partial improvement of the matching accuracy
is achieved extracting keypoints without any constraints from
the resized keyframes. This feature extraction occupied disk
storage space of around 1 TB and consumed around 19 hours
of processing time by a workstation PC with a configuration
of 16 GB RAM and eight 3 GHz CPU cores where all appli-
cations work in parallel utilizing 80 to 90% of its CPU usage.

In the similar way, SIFT features are extracted from
bounding box regions of 30 topics from the provided 120
query examples. One example query is randomly selected
from the four examples. Once the features are extracted and
stored, the 30 queries can be executed at once as a single
application against 1,145,774 text files to perform similar-
ity matching. Since this would exceed the available submis-
sion period, we had chosen another opportunity in this sce-
nario by executing 15 different queries with 2 topics each in
parallel. The extracted SIFT features from the queries are
matched against all keyframes features stored in text files.
All the text files are read in a sequential order and stored
in OpenCV Mat object which facilitates to perform KNN
search and matching. KNN search is executed to retrieve the
2 nearest neighbors for each query keypoint in keyframes ac-
cording to the Euclidean distance metric. In addition to this
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matching criteria, Lowe's proposed ratio test (Lowe, 2004)
with parameter setting of 0.85 is also applied to prune the
ambiguous matched keypoints that are more distant than the
mentioned threshold which are referred to as good matches.
The matching score is calculated as the ratio between good
matches that are left after Lowe's ratio test in comparison to
the total number of matching keypoints in a keyframe. This
matching score is calculated for each query and all available
keyframes. The time taken for similarity matching is around
43 hours of CPU time for 15 applications executed at once.
At the end, there are 30 text files in total with 1,145,774 en-
tries in each text file containing scores and keyframe names.
These text files are further read to sort the scores in a de-
scending order and retrieving the first 1,000 keyframes and
video shot IDs with the highest scores.

3.5 Sequence Clustering

The Sequence Clustering (SC) is based on an alienate video-
segmentation approach. It consists of visual similarity calcu-
lations between all corresponding shots for each video in the
test corpus, followed by sequence clustering. This strategy is
led by the idea that many instance search topics are querying
for objects which mostly can be found at the same location.
For example, the topic 9156 is querying for the symbol of
a beer brand, this symbol can probably be found in any se-
quence located at the pub. The pub has a recognizable com-
bination of colors and textures. Hence, finding all shots with
a similar color- and texture-combination raises the probabil-
ity of finding the beer symbol. In detail, we don't only use
a color similarity calculation to find our results. We perform
a full scene and location segmentation. This has the advan-
tage to find not only a certain keyframe which is very similar
to the topic example, but to return a sequence of continuous
shots representing a location. This raises the chance to find
the query object even if it is placed in shots with different
camera angles.

3.5.1 Workflow

The workflow of the sequence clustering as shown in Fig-
ure 4 can be summarized as followed:

1. Selection and extraction of one keyframe per shot
(frame in the middle of the shot).

2. Calculation of MPEG-7 (Sikora, 2001) visual descrip-
tors: Color Layout Descriptor (CLD), Edge Histogram
Descriptor (EHD) and Scalable Color Descriptor (SCD)
for each keyframe and each topic example.

3. Using a hierarchical agglomerative clustering (HAC)
for each video to find groups of shots with high visual
similarity.

4. Clustering sequences on a second level by linking the
found similarity groups by their temporal dependencies
algorithm.

Figure 4. Analysis workflow of the sequence clustering approach.

5. Selecting a keyframe for each similarity group and se-
quence, plus calculation of MPEG-7 visual descriptors.

6. For each topic:
• Calculation of all similarity distances between the

examples and the similarity-group-keyframes. Re-
turning a list of similarity groups ordered by visual
distance.

• Removing all illegal results, like shots from the test
video or shots equal to the topic examples.

• For each entry in the lists of each example: Insert
all shots which are member of the same sequence
of results.

3.5.2 Similarity Clustering with HAC

Clustering algorithms can be divided into two strategies: top-
down and bottom-up. For example, one of the most used
supervised machine learning algorithms in computer vision
research is k-means clustering. It is a well-known approach
and uses a top-down strategy. Its aim is to assign a set of data
to a number of predefined clusters and to find an optimal as-
signment. It has a good performance, but a big disadvantage
for the use in video segmentation tasks since the number of
clusters has to be already known prior. For our approach we
needed to use a more flexible solution, because it is not pos-
sible to know how many locations or scenes can be found in
a video. Hence, we use a bottom-up strategy by using the
HAC. The HAC starts with one cluster per element (shot).
In an iterative process, the distances between all clusters are
calculated and the closest two clusters are merged into one
combined cluster. With each loop the number of clusters is
reduced by one until an exit condition is complied. The ad-
vantages of the HAC are:

• Customized distance metrics can be implemented.

• Several fusion strategies for the distance calculation of
clusters with multiple elements can be selected.
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Figure 5. Example for the clustering of shots into sequences.

• The exit condition can be configured freely.

The main disadvantage is the high computational complex-
ity of up to O(n3). We used the HAC to calculate groups of
visual similar shots. This similarity groups represent the re-
occuring camera angles and recordings in a similar location.
The BBC EastEnders show a good example for the shot and
reverse-shot technique in film production. The show used
in most of the scenes with a low number (in most cases not
more than 3−5) of different camera angles. But these angles
are used multiple times. Therefore, each scene consists of a
low number of visual similar shot groups. The identification
of these similarity groups builds the key element of a scene
or sequence detection in a subsequent process (see Figure 5).

For the HAC, a distance metric is needed. In our case, we
want to measure the visual distance between two represen-
tative keyframes of two shots. There is a large number of
available visual features. We focus on the MPEG-7 visual
descriptors: CLD, EHD and SCD. For each descriptor, the
distance is calculated as defined in the MPEG-7 standard.
This results in three distance values. To calculate one sin-
gle distance metric, we used a linear combination of all three
distances as well as a fourth part for the transition distance.

The transition resistance (TR) is defined by the number of
shot-boundaries or transitions between two shots. It provides
a correction factor to the other visual distances. It reduces
the visual similarity depending of the temporal distance of
two shots. This reduces the probability of two very similar
shots to be merged together, if they are more than a few tran-
sitions away from each other. Without this correction step,
most clustering analysis would end up with a distribution of
clusters unusable for the later step of sequence analysis. In
case of the EastEnders omnibus episodes with two hours du-
ration, it is very likely that a location occurs several times.

In order to gain reasonable results by the HAC, we needed
to perform a parameter optimization on the similarity met-
rics. The quality of the results depend on the individual
weights of the visual descriptors. We use the training video

for a parameter optimization. Therefore, the sequences are
intellectually annotated as ground truth reference. We found
127 individual sequences in the training video. Based on the
ground truth data, we were able to evaluate the individual pa-
rameter combinations and count the number of merge errors
that occurr during the iterations of the HAC. A merge error
can be defined as a merge of two clusters containing elements
that belong to separate ground truth sequences. The parame-
ter optimization is performed by the evaluation of the results
with different weights of the visual descriptors and the TR.
All four factors are used as relative percentage weights with
a sum of 100%. The linear combination is given by:

a ·CLD+b ·S CD+c ·EHD+d ·TR , a+b+c+d = 1.0 (1)

We tested all combinations of the factors in steps of 5 per-
cent, which results in 1,680 runs. The finally used parameter
set is:

0.15 ·CLD+0.55 ·S CD+0.15 ·EHD+0.15 ·TR (2)

The evaluation results are a minimal Differential Edit Dis-
tance (DED) of 0.4972, while Coverage/Overflow (CO) (see
section 3.5.4) are 0.661/0.339 at HAC iteration 1792.

A linkage criterion defines how the distance of two clusters
is calculated if the cluster consists of more than one element.
Each element is one shot of a video represented as the feature
vectors of CLD, SCD, and EHD as well as the number of the
shot for the calculation of the transition resistance. If a clus-
ter consists of multiple elements, the distance between two
clusters has to be interpolated. The single linkage criterion
calculates the distance between each element of cluster A and
each element of cluster B and uses the minimal distance be-
tween both clusters. This leads in most cases to a long chain
of elements, because this strategy tends to build a small num-
ber of big clusters. From our experiments we learned that this
criterion is not the optimal solution for building similarity
groups of shots. On the opposite, the complete linkage crite-
rion takes the maximum element distance for the distance of
both clusters. This leads to a better distribution with a larger
number of relatively small clusters. A third option could be
to use an average distance or to calculate a virtual centroid as
a representative for each cluster.

Defining a correct exit criterion for the HAC iteration is
a crucial component. It has to match the best segmentation
before the HAC clustering algorithm begins to merge shots
which are too dissimilar. In other applications of HAC, the
exit condition terminates when a certain distance threshold is
reached. In our approach this threshold is unknown. Hence,
we needed to find a different criterion which provides a good
segmentation for the subsequent sequence analysis. It needs
a strong differentiation between shots which are not similar.
It suffers from weak definite similarity groups, but tolerates a
relative high over-segmentation with large numbers of small
similarity groups. With our empirical experiences in intel-
lectual sequence segmentation, we concluded that a typical
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Condition Description

Criterion 1

There are more clusters with two elements than
singular clusters.
The number of singular clusters is smaller than
the elements of the three largest clusters.
There are less than 15 singular cluster left.

Criterion 2
The largest cluster size class is less than 10.
The number of singular clusters is less than 100.

Criterion 3 The number of singular clusters is less than 3.

Table 1. The criteria of the exit condition.

daily soap TV show could use a very small number of single
shots where location views or camera angles appear multi-
ple times. Indeed, most shots tend to reoccur between 3 to
6 times but never for more than 10 times. Accordingly, we
defined the exit criterion by the distribution of the similar-
ity group sizes or respectively the cluster sizes. To guaran-
tee a sufficient progress in the clustering process, we expect
the majority of all clusters to contain more than one element
(shot) but less than 10 elements. In addition, the result should
provide relatively small groups. We defined that the iteration
shall be terminated when the number of elements belonging
to the three largest clusters becomes greater than the num-
ber of elements in all smaller cluster. The criteria of the exit
condition are described in Table 1.

3.5.3 Sequence Analysis

The sequence analysis uses the resulting similarity groups
from the HAC. These are mostly representing similar camera
angles. It is a common technique in TV production to record
a sequence of the plot from multiple fixed camera positions.
The cameras are running simultaneously. The final video se-
quence is a result of the video editing process in the post-
production. During this editing the different camera angles
are reorganized. Especially in dialog sequences, the different
cameras are showing the location from various positions fo-
cused in the involved actors. The goal of the sequence anal-
ysis is to reconstruct the editing process to find the semantic
connections between the camera angles or similarity groups.
This makes it possible to determine whether a couple of sim-
ilarity groups belongs together to form a plot sequence or an
action taking place at the same location. Therefore, the algo-
rithm uses the position of the individual shot in the video in
combination with the positions of other shots in its similarity
group. The following points were considered in the sequence
analysis:

1. Beginning with the fist similarity group in the video all
shots are ordered by its position in the video.

2. If there are gaps in this sequence, the missing shots are
belonging to different similarity groups. This groups
have to be member of the same sequence. These groups
are clustered together.

3. There is no overlapping in the similarity groups at cer-
tain points and there for a number of separate sequences
is the result.

4. These sequences are comparable to story sequences
showing a continuous action like a dialog or taking
place at the same location.

This strategy is inspired by the concept of overlapping links
and Scene Transition Graphs (STG) introduced by (Hanjalic
et al., 1999) and (Yeung et al., 1998). To evaluate the ac-
curacy of the clustering process, we compared the results
with our ground truth data of test videos from the intellec-
tual annotation. The evaluation metrics are described in sec-
tion 3.5.4. Our implementation provides a result in a hierar-
chical data structure. Every video file consist of 1,2,...,m se-
quences. Each sequence consist of 1,2,...,n shots. Each shot
can only be connected to one sequence and only one simi-
larity group. At the end, we are able to find the most simi-
lar shot in the test set for each example of a topic. For this
reason, the data structure delivers all shots in the same simi-
larity group. It delivers the corresponding sequence with all
dissimilar shots, which are probably taking place at the same
location or belong to the same plot action. We assume, that
these resulting lists of shots entail (depending on the selected
topic) a higher probability of showing the queried object than
other randomly selected shots from the test set.

3.5.4 Evaluation Metrics

Common evaluation metrics at TRECVID are Precision and
Recall. Unfortunately, these metric proved to be insufficient
for the evaluation of our parameter optimization. When it
comes to the rating of a segmentation or clustering result, it is
hard to decide whether a solution's result is positive or nega-
tive. Results are commonly never absolute right nor absolute
wrong. Some authors like (Rasheed and Shah, 2003) com-
pensate this by defining gradual measures like a degree of
acceptable errors. But in the context of video segmentation
there are other more suitable metrics like coverage/overflow
or differential edit distance. Both are based on comparing
a result with ground truth data measuring the degree of dis-
tance between the result and the optimal solution.

The Coverage/Overflow (CO) metric was introduced by
(Vendrig and Worring, 2002). It consists of two components.
For each ground truth sequence the coverage searches the
largest overlapping within a calculated sequence and counts
the number of correct assigned elements (here shots). The
results based on the sequence are aggregated to the arith-
metical mean for the complete video in the interval [0,1].
The optimal solution would result in a coverage of 1.0. The
overflow counts for each ground truth sequence the number
of shots belonging to other sequences, which are mistakenly
assigned to this sequence. The result is aggregated over the
video. The overflow has the same scope as coverage, but the
best result has an overflow of 0.0. Hence the optimal solu-
tion would have a coverage/overflow of 1.0/0.0. Generally, it
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Figure 6. Evaluation result of the first run “I E TUC 1”.

can be concluded that coverage measures the degree of over-
segmentation in a solution. A result of too many small seg-
ments results in a bad coverage. The overflow measures the
under-segmentation and is sensitive to solutions where too
many elements were merged and the found sequences exceed
the boundaries of their ground truth equivalent.

The coverage/overflow metric is very useful, but it is not
able to determine the accuracy of a result in a single value.
An additional metric is defined as DED by (Sidiropoulos
et al., 2012). It directly measures the distance between a
result candidate and the ground truth reference. It simply
counts the number of editing cuts a human editor would have
to perform to transform the result into an optimal solution.
The DED is measured as a percentage where 100% denotes
the number of elements (shots) in the video, because this
would be the number of operations to be done in the worst
case. Thus, the optimal solution has a DED of 0.

3.5.5 Processing

The calculation is distributed on seven workstation servers
due to the computational effort. Each calculation instance
works in a virtual machine regardless if it is part of the
parameter optimization, descriptor calculation, clustering or
similarity comparison. This enabled us to scale up the system
performance using a parallel execution with up to 15 parallel
instances.

For the evaluation and processing of similarity groups and
sequences we use a MS SQL 2012 Database as central data
warehouse. This enables us to scale up the processing and
distribute it on a server cluster. The database stores and ag-
gregates the following data sets:

• Master shot reference provided by NIST.
• Visual descriptors for each shot.
• Relations between shots and similarity groups.
• Relations between similarity groups and sequences.
• Ground truth sequences data.
• Evaluation presets and results.
• Ordered similarity lists for each topic sample.

4 Results

We participated in four different runs: One interactive and
three automatic ones.

4.1 Run 1: Interactive Run

In our first interactive run (“I E TUC 1”), we chose a result
set from either the combination of “CNN & BoW & Audio”
or the combination of “SIFT & KNN” classifiers when the
specific topic was presented at the start of each interactive
evaluation period. The result sets were evaluated with our
graphical evaluation tool (Ritter et al., 2015, 2014; Ritter and
Eibl, 2011) which presented up to 4,500 instance candidates
per topic. Within the 15 minutes period, we were capable of
intellectually examining 3,500 candidates in average group-
ing them into positive and negative result sets. If necessary,
the remaining positive set was taken as input for the instant
PRNA algorithm that filled the final results lists up to 1,000
examples.

In 9140, 9153, 9157 and 9158, we identified a high num-
ber of true positive matches compared to the whole pool of
relevant shots, which leads to a higher recall of objects with
sharp edges and SIFT descriptor preprocessing. Comparing
the results of our run with the other six interactive runs sub-
mitted for the evaluation, with a result of 0.17, we scored a
place in the midfield with respect to Mean Average Precision
(see Figure 6).

4.2 Run 2: CNN & BoW & Audio

The fully automatic run (“F E TUC 2”) used the “CNN &
BoW & Audio” classifiers. An initial screening with the
DIGITS front end revealed very promising results for our
deep learning approach. The generated data sets seemed
sufficient and examples of wanted instances from episode 0
were regularly ranked among the top 5 results. We assumed,
that keyframes, that did not contain any of the given topic ob-
jects would score significantly lower relevance ratings. Un-
fortunately, the final results of TRECVID evaluation cam-
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Figure 7. Evaluation result of the fourth run “F A TUC 4”.

paign, did not confirm this assumption. In addition, the
scored ratings for a significantly large number of false de-
tections were often as high as for correct matches.

The best topic is 9157 with 51 matches in the evaluation
pool. By comparing the results with the evaluation of our
interactive run 1, where the same classifiers were used as a
base, we found that our ranking algorithm turned to be in-
sufficient. However, our interactive evaluation showed that
we are capable of identifying more true positive hits in larger
sets containing multiple thousands of results. As a result, our
Mean Average Precision scored very low at 0.004. Hence, we
assume that our instance of the DIGITS classification frame-
work using default configuration settings with small amounts
of training data appears to be insufficient for large scale data
sets, especially when the trained categories do not support
object classification for unknown instances (“no class”).

4.3 Run 3: SIFT & KNN

Our second fully automatic run (“F A TUC 3”) uses the
“SIFT & KNN” classifiers. We achieved positive hits for half
of the topics. Many relevant shots were found in the follow-
ing three topics: 9157 with 431 hits, 9153 with 231 hits, and
9158 with 182 hits resulting in a low overall Mean Average
Precision of 0.023.

4.4 Run 4: SC & PRNA

Another fully automatic run (“F A TUC 4”) uses the se-
quence clustering approach. Unfortunately, we were not able
to finish the calculation of ”F A TUC 4” in time forcing us
to abort the final similarity parameter optimization at about
60 percent. This led to some topics with less than 1,000 avail-
able results. Furthermore, there were even some topics with-
out any results. Therefore, the remaining slots were filled up
again by PRNA. The results for topic numbers 9134, 9135,
9137, 9139, 9145, 9146, 9154, 9155 and 9158 were filled up
by PRNA, whereas for topic numbers 9136, 9150 and 9153
no results were found and all slots had to be filled by PRNA
only with the example shots as input. Figure 7 shows the

evaluation results for this run. With a Mean Average Preci-
sion of 0.025 for this run, this is our best automatic run this
year. We expect a completed parameter optimization to de-
liver improved results.

5 Conclusions and Future Work

This work introduced our approaches for instance search. We
submitted results in four different runs (one interactive and
three automatic). In addition to the adaptable keyframe ex-
traction schemes and the PRNA approach which were pre-
sented last year, different methods are developed or rather
combined to achieve the task of instance search in this year.

Our fully automated shot oriented approach (SC & PRNA)
performed slightly better than our instance-based approaches
(CNN and SIFT). While we were able to identify relevant
shots for almost all topics, the CNN and SIFT methods did
not succeed in 20 to 50 percent of the topics. However, there
are some topics with respectable results using SIFT classi-
fiers (9140, 9153, 9157, and 9158) for structured objects with
sharp edges. A remaining challenge is to create a reasonable
ranking algorithm that incorporates multiple features.

The results of our probabilistic approach (PRNA) showed,
that the assumptions concerning the spatio-temporal connec-
tion between the shots and the corresponding occurrences of
searched instances are valid for the evaluated data set. Es-
pecially in our interactive run, we recorded a massive im-
provement in the recall, when there were only a few but fur-
ther distributed identified instances. The application of the
sequence clustering (SC) algorithm as a preprocessing step
significantly improved the results. However, it is likely to
achieve further improvements by including additional fea-
tures beyond MPEG-7. Especially, centroid linkage and av-
erage linkage are supposed to be promising strategies. A so-
lution of an audio-based shot boundary detection could be
a useful extension, as well as a face detection for the main
characters and supporting actors. But the most important task
is to extend this approach to construct a preprocessing com-
ponent to support the instance search solutions.
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We entered the domain of deep learning strategies for in-
stance search for the first time this year. Currently available
frameworks like DIGITS and Caffe provided us with the tools
needed for the training of convolutional neural networks. We
built our deep learning workflow from the scratch with fo-
cus on the instance search task. Large scale classification
with neural networks is a demanding challenge and results
are largely dependent on the quality of training data sets as
well as the selection of distinct categories for the classifi-
cation process. Preprocessing and enhancement of data for
those training sets can have significant impact on the overall
quality of the classification. Postprocessing of classification
results and the combination of those results with additional
measures might help us to reduce the number of false posi-
tive detections in the future, which is important for the clas-
sification of mass data. Utilizing different models of neural
networks for specific purposes (e.g. the detection of people,
machines or locations) and additional high-level information
(e.g. shot compositions or global visual features) might help
to further improve the search for certain classes of objects
besides the search for specific instances of objects.

The matching and retrieval in the “SIFT & KNN” clas-
sifiers is based on SIFT features matching and Lowe's ra-
tio test without any spatial verification. To further improve
the matching accuracy, carefully chosen spatial verification
strategies with less computationally expensive approaches
could be integrated into the matching process. By using ef-
ficient re-ranking techniques, the retrieval rate could also be
improved.
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