Leveraging Multimodal LDA for Hyperlinking
Anca Roxana Simon, Ronan Sicre, Rémi Bois, Guillaume Gravier, Pascale Sébiliot
IRISA

Abstract
We present the runs that we submitted to the Video Hyperlinking task. Two out of four runs use cross-modal Latent Dirichlet Allocation (LDA) as a means to jointly use visual and audio information in the videos. As a contrast, one run is based solely on visual information, and the last one is a combination of cross-modal and visual runs.

LDA for hyperlinking
LDA learns latent topics from a series of documents. Documents are associated with a distribution of topics, used to link them.

LDA example
- High similarity scores can be achieved by documents that do not share much vocabulary

Building a Bimodal LDA
- Originally used with two languages in machine translation [2]
- Adapted to two modalities (audio and visual informations)
- 700 latent bimodal topics were extracted
- Objectives: diversity and serendipity [1]
- Four different kinds of links built depending on the modalities

Most frequent words in both modalities for two topics
Topic 3 Audio love home feel day life baby made thing la
Topic 3 Visual singer microphone sax concert master-of-ceremonies cornet flute
Topic 25 Audio years technology computer find key future power machine speed
Topic 25 Visual equipment machine tape-player computer appliance-recording

Experiments
Data and Runs
- Closest to a real-word setting
- LIMSI’s automatic transcriptions are used
- Leuven’s extracted visual concepts are used

Run 1 Visual concepts similarity (no topics) with visual reranking (on top 50)
Run 2 Audio to visual with visual reranking (on top 50)
Run 3 Visual to audio with ngram reranking (on top 50)
Run 4 Rank Aggregation (with Runs 1-2-3 and a pure ngram scoring)

Results

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prec 10</td>
<td>0.017</td>
<td>0.198</td>
<td>0.524</td>
<td>0.608</td>
<td></td>
</tr>
<tr>
<td>Run 1</td>
<td>0.207</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 2</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 3</td>
<td>0.224</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 4</td>
<td>0.156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We attribute the low scores to our real-world setting choice as well as some properties of the evaluation (see thereafter).

Discussion – Evaluation
The evaluation has been carried via Mechanical Turk, a realistic and affordable way to obtain a large amount of relevance score. However, we notice a few cons:
- Only one evaluation per anchor-target pair
- Yes/No question on relevance
- No clue on the difficulty of the task

We evaluated the Fleiss-κ on a similar task and obtained very low scores (near 0), indicating that anchor-target relevance is highly subjective.

Discussion – Diversity and serendipity
Despite forbidding the use of the same show for target candidates, many near-duplicates remain due to rebroadcasted shows. These near-duplicates are not interesting for users who are mostly looking for new information.

Conclusion
We proposed a new way to link video fragments. This new method focuses on diversity and serendipity, two aspects that are not evaluated in the hyperlinking task. Some low results can be attributed to the preference for highly similar anchor-target pairs in the evaluation.

References