2015 TRECVID Workshop
Multimedia Event Detection Task

Jonathan Fiscus*, David Joy*, Martial Michel*
Yooyoung Lee+

* National Institute of Standards and Technology (NIST)
+ Dakota Consulting, Inc.
Talk Outline

• MED Task Overview
• HAVIC Resources
• MED Results
• Future Plans
MED ‘15 Overview

• MED evaluations from 2010-2015
 – Supported by the IARPA Aladdin Program and LDC Collected Data
 – NIST intends to continue support but with reduced costs taking into account lessons learned and addressing un-met challenges
 • Constructed data sets with exhaustive annotation
 • Variable event richness

• 2015 MED task simplifications
 – Multimedia Event Recounting task discontinued
 – 100 Exemplar Ad-Hoc Event training discontinued
 – Hardware/runtime reporting simplified
 – Primary metric changed to Inferred Average Precision with pooled assessment for reference generation.
Multimedia Event Detection Task

Multimedia Event Detection (MED)
Quickly find instances of events in a large collection of search videos

The query’s central role

Evaluation Conditions

Execution Hardware Reporting
- 3 Classes of Computing Hardware
 - Small: 100 CPU cores, 1,000 GPU cores
 - Medium: 1,000 CPU cores, 10,000 GPU cores
 - Large: 3,000 CPU cores, 30,000 GPU cores

Query Training Conditions

<table>
<thead>
<tr>
<th>Number of Exemplars</th>
<th>Pre-Specified Events</th>
<th>Ad-Hoc Events</th>
<th>Interactive Ad-Hoc Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Search Collection
- MED15Eval-Full -> 198K videos, 7,580 hours
- MED15Eval-Sub -> 32K video subset, 1,238 hours
Land Vehicle Accident Event

Definition:
A motorized land vehicle being operated by a human hits or crashes into another vehicle or object.

Explication:
The vehicle initiating the accident must be a motorized land vehicle (e.g. non-motorized bicycles, scooters, etc. are excluded from this event). The vehicles motion must be directed at least in part by a human operator to be considered a positive. Simple loss of control …

Evidential Description:
- **scene**: outdoors, typically on roads or highways and often proximal to other vehicles and/or man-made …
- **objects/people**: motorized land vehicle, car, truck, operator, onlookers, man-made structure or barrier
- **activities**: driving, loss of vehicular control, people observing accident, people and or other vehicles …
- **audio**: vehicle impacting other vehicle or object, engine noise, tires screeching, honking, people yelling …

Illustrative Examples
- Positive instances of the event
- Non-Positive “miss” clips that do not contain the event
The TRECVID MED 2015 Events

Pre-Specified Events

MED ’14 PS Events
- Attempting a bike trick
- Cleaning an appliance
- Dog show
- Giving directions to a location
- Marriage proposal
- Renovating a home
- Rock climbing
- Town hall meeting
- Winning a race without a vehicle
- Working on a metal crafts project

MED ’14 AH Events

- Beekeeping
- Wedding shower
- Non-motorized veh. repair
- Fixing musical instrument
- Horse riding competition
- Felling a tree
- Parking a vehicle
- Playing fetch
- Tailgating
- Tuning musical instrument

Ad-Hoc Events

New Events
- Gardeners harvest food
- Land vehicle accident
- Person jumps into nat. water
- Cooking on an outdoor grill
- Moving through a flooded st.
- Skyscraper window cleaning
- Firefighters battle a fire
- Climbing a tree
- Lecture to an audience
- Team scores a touchdown
16 MED 2015 Finishers By Condition

<table>
<thead>
<tr>
<th>Years</th>
<th>Team</th>
<th>AH</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10Ex</td>
<td>0Ex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SML</td>
<td>MED</td>
</tr>
<tr>
<td>5</td>
<td>CMU</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>MediaMill</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>NIIHitachiUIT</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>TokyoTech</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>4</td>
<td>VIREO_TNO</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>2</td>
<td>ITICERTH</td>
<td>Full</td>
<td>Sub</td>
</tr>
<tr>
<td></td>
<td>KoreaUnivISPL</td>
<td>Sub</td>
<td>Sub</td>
</tr>
<tr>
<td></td>
<td>NTTFudan</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>MCIS</td>
<td>Sub</td>
<td>Sub</td>
</tr>
<tr>
<td></td>
<td>UEC</td>
<td>Sub</td>
<td>University of Electro-Communications</td>
</tr>
<tr>
<td>1</td>
<td>BCMI-SJTU</td>
<td>Sub</td>
<td>Sub</td>
</tr>
<tr>
<td></td>
<td>BUPTMCPRl</td>
<td>Sub</td>
<td>Sub</td>
</tr>
<tr>
<td></td>
<td>Etter</td>
<td>Sub</td>
<td>Sub</td>
</tr>
<tr>
<td></td>
<td>Fudan</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>NEUMITLL</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>SiegenKobeNict</td>
<td>Sub</td>
<td>Sub</td>
</tr>
</tbody>
</table>
HAVIC Data Resources

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Video clips</th>
<th>Video duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESEARCH</td>
<td>10,000</td>
<td>314 hours</td>
</tr>
<tr>
<td>10 Event Kits</td>
<td>1,400</td>
<td>74 hours</td>
</tr>
<tr>
<td>Transcription</td>
<td>1,500</td>
<td>45 hours</td>
</tr>
<tr>
<td>Event Training Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event Background</td>
<td>5,000</td>
<td>146 hours</td>
</tr>
<tr>
<td>40 Event Kits</td>
<td>6,000</td>
<td>270 hours</td>
</tr>
<tr>
<td>Test Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDTest</td>
<td>27,000</td>
<td>849 hours</td>
</tr>
<tr>
<td>KindredTest</td>
<td>14,500</td>
<td>687 hours</td>
</tr>
<tr>
<td>Evaluation Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MED14Eval-Full</td>
<td>198,000</td>
<td>7,580 hours</td>
</tr>
<tr>
<td>MED14Eval-Sub</td>
<td>33,000</td>
<td>1,244 hours</td>
</tr>
<tr>
<td>Total</td>
<td>244,000</td>
<td>9,911 hours</td>
</tr>
</tbody>
</table>

New for 2015: LIMSI provided Speech transcripts
MED ‘15 Results

• Pre-Specified Event Results
 – Mean Average Precision (MAP)
 • Search set variations Full vs. Sub, Event-Specific AP
 – Inferred Mean Average Precision (InfMAP)
 – Correlation MAP vs. InfMAP

• Ad-Hoc Event Results
 – Inferred Average Precision
Pre-Specified Event Primary Systems

MAP(EvalSub) = 1.09 * MAP(EvalFull) + 4.74
R^2 = 0.993
Pre-Specified AP by System and Event
MED15EvalSub, 10Ex, Mixed System Size
MAP → Inferred Mean Average Precision (InfMAP)

 - Stratified, variable density, pooled assessment procedure to approximate MAP
- InfMAP in the 2015 evaluation
 - Scored PS submissions as both MAP and simulated InfMAP with the reference annotation
 - Ad-Hoc Events reference assessment using InfMAP procedures
- NIST ran experiments with 2014 data to optimize the strata sizes and sampling rate
 - Define 2 strata
 - 1-60 -> 100 %
 - 61-200 -> 20 %

\[M_{\text{InfAP200}} = 0.011 \times \text{MAP} + 0.00203 \]
\[R^2 = 0.989 \]
Ad-Hoc Event Results

- 10 new events
 - Exemplars defined using training resources
 - 10 Exemplar training only
- MED15EvalFull the required condition
- Reference Generation
 - Pooled assessment with using all submissions
 - Stats about the pooling/strata
 - 1:60:100%
 - 61:200:20%
Ad-Hoc InfAP by System and Event
10Ex, Mixed System Size

- E067 Firefighters_battle_a_fire
- E065 Moving_through_a_flooded_street
- E068 Climbing_a_tree
- E064 Cooking_on_an_outdoor_grill
- E063 Person_jumps_into_natural_water
- E069 Lecture_to_an_audience
- E070 Team_scores_a_touchdown
- E061 Gardeners_harvest_food
- E066 Skyscraper_window_cleaning
- E062 Land_vehicle_accident

- MediaMill
- NTTFudan
- Fudan
- VIREO
- NIIHitachiUIT
- TokyoTech
Ad-Hoc Pooled Assessment
Event Richness vs. InfAP

Event Richness in Annotation Pools

Ad-Hoc 10Ex - Event InfMAP200 Box Plots
MED ‘15 Summary

• Pre-Specified Results
 – First reporting of event-specific scores
 – Most teams built “Small” hardware systems
 – Most teams processed the subset (1.2K hr.) search collection

• Ad-Hoc Results
 – Limited participation this year – Only teams able to process the full (7.5K hr.) search collection
 – Testing with 10Ex event kits
 – No one participated in the Interactive Event Query test

• The transition from MAP to InfMAP produced correlated results
 – Testing with new collections without exhaustive annotation
Preparation for MED ‘16

• Ad-Hoc events are a key aspect of MED
 – Current capabilities indicate 10-Exemplar testing is feasible
 – Inexpensive to create/disseminate
 – Does not rely on constructed data

• Pooled assessment and InfMAP produced similar results to MAP
 – Exhaustive annotations not required

• Many new teams built low-resource systems

• Straw proposal for MED ’16
 – Use Novel2 as the search collection (Possibility of using the YFCC100M set)
 – PROGESS data set released as a development collection (date TBD)
 – 10 new Ad-Hoc events
 – Discontinue Pre-Specified Event Testing
Questions?