Fast RCNN and DPM As a Combination for Spatial Reranking

Vinh-Tiep Nguyen⁽²⁾⁽³⁾, Duy-Dinh Le⁽¹⁾, Amaia Salvador⁽³⁾, Caizhi-Zhu⁽⁵⁾, Dinh-Luan Nguyen⁽³⁾, Minh-Triet Tran⁽³⁾, Thanh Ngo Duc⁽²⁾, Duc Anh Duong⁽²⁾, Shin'ichi Satoh⁽¹⁾, Xavier Giro-i-Nieto⁽⁴⁾

⁽¹⁾ National Institute of Informatics, Japan (NII)
 ⁽²⁾ VNU-HCMC - University of Information Technology, Vietnam (UIT-HCM)
 ⁽³⁾ VNU-HCMC - University of Science, Vietnam (HCMUS-HCM)
 ⁽⁴⁾ Universitat Politecnica de Catalunya (UPC)
 ⁽⁵⁾ Nagoya University , Japan (NU)

General Instance Search Framework ⁽¹⁾

- (1) **Three things everyone should know to improve object retrieval,** R. Arandjelović, A. Zisserman, CVPR 2012
- (2) **Query-adaptive asymmetrical dissimilarities for visual object retrieval,** Cai-Zhi Zhu, Hervé Jégou, Shin'Ichi Satoh, ICCV 2013.

BOW is Good for Rich Featured Objects

But ... Not for Less Textured Objects

• Small objects

Query

Background Dominated Query Object

• Burstiness

Query

DPM-based Object Localizer

Query 9109

• Benefit:

- Model query object as a shape structure.
- Work well with small and texture-less object.
- Augment bounding box information.

DPM Is Good for Less Textured Objects

Wrong shared words case

No shared word case

DPM: The Good and The Bad

• DPM is based on gray scale feature

Re-Scoring Method → Our Main Contribution in 2014

where:

 N_d : number of shared words of foreground inside bounding box (green lines) N_{fg} : number of shared word of foreground (both blue and green lines) N_{bg} : number of shared word of background (black lines) w_1 : weight of BOW score w_2 : weight of DPM score

- How to weight score of BOW and DPM?
- How to handle more highly deformable and rich colored texture objects?
- \Rightarrow This year, we tried two methods.

Query Adaptive Fusion

- Instead of using average approach (w1=w2), we proposed an adaptive way of fusion.
- A neural network is used to automatically estimate weights of combining the two scores of BOW and DPM.

Query Adaptive Fusion

- Input of the network are features derived from:
 - average ratio of object area to image area
 - average number of keypoints inside query mask
 - number of shared visual words between two query examples
- Output of the network is weight of BOW and DPM derived from last years dataset
- Adaptive fusion score (*NII_HITACHI_UIT_1*):

 $S_{new} = (1 + N_d)^2 (1 + N_{fg} - N_d) \log_2 (1 + N_{bg}) (w_1^* S_{BOW}^* + w_2^* S_{DPM}^*)$

Combination with RCNN Based Object Detector

• DPM are good, but it:

- does not take into account color information
- has not enough training data and hard negatives
- still bad at too much deformable object (with occlusion)
- RCNN based object detector are current SOA
 - uses color information to compute similarity score
 - trained on a lot of data
 - retrained on specific query object
 - still not good at finding bounding box
- ⇒ We combine these methods together

Final Score Based on Fast RCNN and DPM

• The final score of our proposed method is given as following (*NII_HITACHI_UIT_3*):

 $S_{new} = (1 + N_d^{DPM})^2 (1 + N_{fg}^{DPM} - N_d^{DPM}) \log_2 (1 + N_{bg}^{DPM}) (w_1 S_{BOW}^* + w_2 S_{FRCNN}^*)$

where,

- Bounding box is kept as last year (returned from DPM), 3 types of shared points are computed the same
- Normalized score of Fast RCNN are used to compute base score

Experiments

Run ID	Description	МАР
F_A_NII_Hitachi_UIT_1	Query adaptive fusion	40.11%
F_A_NII_Hitachi_UIT_2	Last year config with w1=w2=0.5	41.76%
F_A_NII_Hitachi_UIT_3	Late fusion of DPM and Fast RCNN	42.42%
F_A_NII_Hitachi_UIT_4	Last year config with w1=0.67, w2=0.33	41.53%

Results - Good

- We got max perf on 8/30 queries from our 4 submitted runs.
- Object query (9145 \rightarrow this jukebox wall unit)

Object query (9146 → this change machine)

Results - Good

Consistently good for logo query (2014 & 2015)
(9137 → a Ford script logo)

[shot160_453-1850.894336] 🥯

[shot135_95-177.919637]

• Small objects (9129 \rightarrow this silver necklace)

[shot218_1765-0.125700] 🤗

[shot49_171-0.124500] 🤗

10.

• Texture, illumination $(9139 \rightarrow this shaggy dog (Genghis))$

[shot194_1104-0.211400]

[shot206_381-0.208600]

Color information is important (9136 → this yellow VW beetle with roofrack)

[shot135_1383-0.176500] 🥮

[shot128_2066-0.137300]

• Context (9155 \rightarrow this dart board)

[shot6_111-0.593400] 🥯

- The first time we use a RCNN in our system and it improves pretty much compared to two baselines (41.76% → 42.42%)
 - take into account pretrained network.
 - take advantage of color information.
- We tried to improve the adaptive weighting and it works on previous datasets, but unsuccessful in this year (40.11% vs 41.76%)
- There still have unsolved problems:
 - Too small objects (with no texture).
 - Too flexible query instances: persons, animals.

Best Run NII_Hitachi_UIT_3 (42.42%)

