Direct or Indirect Match?
Selecting Right Concepts for Zero-Example Case

Speaker: Yi-Jie Lu

Yi-Jie Lu¹, Maaike de Boer²,³, Hao Zhang¹,
Klamer Schutte², Wessel Kraaij²,³, Chong-Wah Ngo¹

¹VIREO Group, City University of Hong Kong, Hong Kong
²Netherlands Organization for Applied Scientific Research (TNO), Netherlands
³Radboud University, Nijmegen, Netherlands
Outline

- Introduce overall performance in 2015
- Difference with 2014 submission
 - An enlarged concept bank
 - Strategy to pick up the right concepts from concept bank
Achievements in 2015

PS_EvalFull_000Ex MAP

- Auto '14: 5.2%
- Auto '15: 15.7%
- Manual '15: 17.1%
Achievements in 2015

PS_EvalSub_000Ex MAP

Manual ’15
Important changes from ’14?
• Recall the Semantic Query Generation (SQG):

Event Query

(Attempting a Bike Trick)

Concept Bank

Semantic Query

< Objects >
- Bike 0.60
- Motorcycle 0.60
- Mountain bike 0.60

< Actions >
- Bike trick 1.00
- Ridding bike 0.62
- Flipping bike 0.61
- Assembling a bike 0.60

< Scenes >
- Motorcycle speedway 0.01
- Parking lot 0.01

Exact Match
WordNet
TFIDF, Specificity ...
Recall our 2014 findings

Extinguishing a Fire

Missing key concepts

[Fire extinguisher] [Firefighter]

Exact match >> WordNet/ConceptNet
What we do?

Event Query
(Attempting a Bike Trick)

SQG

Semantic Query

- **< Objects >**
 - Bike 0.60
 - Motorcycle 0.60
 - Mountain bike 0.60

- **< Actions >**
 - Bike trick 1.00
 - Ridding bike 0.62
 - Flipping bike 0.61
 - Assembling a bike 0.60

- **< Scenes >**
 - Motorcycle speedway 0.01
 - Parking lot 0.01

Enlarged Concept Bank

1. Manually
2. Refined Query
Enlarge the concept bank

2014
- Research set (497)
- ImageNet ILSVRC (1000)
- SIN (346)

2015
- CNN + Sports (487)
- CNN + FCVID (239)
- CNN + Places (205)

SFRISP (2774)
Concept Bank Review

Higher level

Sports 487 (activities, events)

ImageNet 1000 (objects)

FCVID 239 (activities, events)

Places 205 (scenes)

RS 497 (mixed)

SIN 346 (objects, actions)

Lower level
• Sports (487) [1]

Concept Bank Review

• FCVID (239)
 – A large dataset contains high-level activities/events
 ▪ accordion performance
 ▪ American football professional
 ▪ bungee jumping
 ▪ car accidents
 ▪ fire fighting
 ▪ playing frisbee with dog
 ▪ rock climbing
 ▪ wedding ceremony
Contributions of Sports and FCVID

MAP on MED14-Test

- with Sports and FCVID: 19.2%
- without: 10.8%

- without (Manual): 10.8%
- with (Manual): 19.2% (-8.4%)
Contribution of Sports+FCVID (726 concepts) on MED14-Test

- 23: dog show
- 27: rock climbing
- 28: town hall meeting
- 34: fixing musical instrument
- 35: horse riding competition
- 37: parking vehicle
- 39: tailgating
- 40: tuning musical instrument

The diagram compares the contribution of Sports+FCVID with and without the manual approach. The concepts are visualized with bars indicating their contribution percentage.
In combination of 6 different resources:

How to wisely choose the right concepts?
Recall an important finding in the last year:

Event 31: Beekeeping

- Bee house (ImageNet)
- Cutting (research collection)
- Cutting down tree (research collection)
- Bee (ImageNet)
- Honeycomb (ImageNet)
Strategies for automatic SQG last year

Hit the best MAP by only retaining the Top 8 concepts

Mean Average Precision

Top k Concepts

MAP(all)
What we got?

• The top few concepts might have already achieved a good performance
• Adding concepts that are *less relevant* tends to decrease the performance
Per-dataset performance by using best-\(k\) concepts (MED14-Test)

<table>
<thead>
<tr>
<th>EventID</th>
<th>EventName</th>
<th>Research497 (Top 2)</th>
<th>ILSVRC1000 (Top 3)</th>
<th>SIN346 (Top 5)</th>
<th>Places205 (Top 2)</th>
<th>FCVID239 (Top 1)</th>
<th>Sports487 (Manual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>attempting_bike_trick</td>
<td>0.132</td>
<td>0.109</td>
<td>0.059</td>
<td>0.007</td>
<td>0.003</td>
<td>0.196</td>
</tr>
<tr>
<td>22</td>
<td>cleaning_appliance</td>
<td>0.012</td>
<td>0.019</td>
<td>0.005</td>
<td>0.009</td>
<td>0.062</td>
<td>0.002</td>
</tr>
<tr>
<td>23</td>
<td>dog_show</td>
<td>0.430</td>
<td>0.011</td>
<td>0.012</td>
<td>0.004</td>
<td>0.004</td>
<td>0.777</td>
</tr>
<tr>
<td>24</td>
<td>giving_direction_location</td>
<td>0.006</td>
<td>0.003</td>
<td>0.003</td>
<td>0.007</td>
<td>0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>25</td>
<td>marriage_proposal</td>
<td>0.005</td>
<td>0.002</td>
<td>0.006</td>
<td>0.002</td>
<td>0.010</td>
<td>0.006</td>
</tr>
<tr>
<td>26</td>
<td>renovating_home</td>
<td>0.007</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.001</td>
<td>0.006</td>
</tr>
<tr>
<td>27</td>
<td>rock_climbing</td>
<td>0.022</td>
<td>0.004</td>
<td>0.001</td>
<td>0.004</td>
<td>0.065</td>
<td>0.288</td>
</tr>
<tr>
<td>28</td>
<td>town_hall_meeting</td>
<td>0.024</td>
<td>0.001</td>
<td>0.016</td>
<td>0.008</td>
<td>0.148</td>
<td>0.001</td>
</tr>
<tr>
<td>29</td>
<td>winning_race_vehicle</td>
<td>0.147</td>
<td>0.005</td>
<td>0.001</td>
<td>0.006</td>
<td>0.005</td>
<td>0.016</td>
</tr>
<tr>
<td>30</td>
<td>working_metal_craft_project</td>
<td>0.144</td>
<td>0.009</td>
<td>0.002</td>
<td>0.001</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>31</td>
<td>beekeeping</td>
<td>0.003</td>
<td>0.648</td>
<td>0.002</td>
<td>0.002</td>
<td>0.262</td>
<td>0.001</td>
</tr>
<tr>
<td>32</td>
<td>wedding_shower</td>
<td>0.009</td>
<td>0.003</td>
<td>0.022</td>
<td>0.002</td>
<td>0.005</td>
<td>0.003</td>
</tr>
<tr>
<td>33</td>
<td>non-motorized_vehicle_repair</td>
<td>0.026</td>
<td>0.002</td>
<td>0.005</td>
<td>0.002</td>
<td>0.008</td>
<td>0.450</td>
</tr>
<tr>
<td>34</td>
<td>fixing_musical_instrument</td>
<td>0.016</td>
<td>0.002</td>
<td>0.011</td>
<td>0.004</td>
<td>0.146</td>
<td>0.001</td>
</tr>
<tr>
<td>35</td>
<td>horse_riding_competition</td>
<td>0.013</td>
<td>0.022</td>
<td>0.071</td>
<td>0.234</td>
<td>0.278</td>
<td>0.278</td>
</tr>
<tr>
<td>36</td>
<td>felling_tree</td>
<td>0.022</td>
<td>0.004</td>
<td>0.018</td>
<td>0.051</td>
<td>0.018</td>
<td>0.001</td>
</tr>
<tr>
<td>37</td>
<td>parking_vehicle</td>
<td>0.026</td>
<td>0.057</td>
<td>0.037</td>
<td>0.022</td>
<td>0.215</td>
<td>0.002</td>
</tr>
<tr>
<td>38</td>
<td>playing_fetch</td>
<td>0.002</td>
<td>0.032</td>
<td>0.010</td>
<td>0.017</td>
<td>0.008</td>
<td>0.020</td>
</tr>
<tr>
<td>39</td>
<td>tailgating</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.007</td>
<td>0.232</td>
<td>0.001</td>
</tr>
<tr>
<td>40</td>
<td>tuning_musical_instrument</td>
<td>0.008</td>
<td>0.048</td>
<td>0.001</td>
<td>0.002</td>
<td>0.050</td>
<td>0.001</td>
</tr>
</tbody>
</table>

MAP(all) | 0.053 | 0.049 | 0.014 | 0.020 | 0.071 | 0.103 |
MAP(21-30) | 0.093 | 0.017 | 0.011 | 0.005 | 0.037 | 0.130 |
MAP(31-40) | 0.013 | 0.082 | 0.018 | 0.034 | 0.106 | 0.076 |

Finding If a good match can be found, high-level concepts far overwhelm componential concepts such as objects and scenes.
Strategies for manual concept screening

- Only carefully include concepts that are *distinctive* to an event if we find a concept detector *semantically same* as the event.
- Remove *false positives* by screening the names of concepts.
- Remove concepts for which training videos appear in *very different context* based on human’s common sense.

- Rock climbing, bouldering, sport climbing, artificial rock wall
- Rope climbing, climbing, rock
- Rock fishing, rock band performance
- Stone wall, grabbing rock
Strategies for automatic SQG

- If a concept detector with the *same name* of the event can be found, simply choose that detector and discard anything else
- Otherwise, choose the **top** k concepts according to the relevance score
- k is found to be optimized at around **10**, and kept the same for all events
Automatic SQG top k vs. new strategy (MED14-Test)

<table>
<thead>
<tr>
<th>Week</th>
<th>Activity</th>
<th>Automatic (top k)</th>
<th>Automatic (new strategy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>New strategy 15.7%</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>Top k (last year) 12.9%</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td>23: dog show</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>27: rock climbing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39: tailgating</td>
</tr>
</tbody>
</table>

MAP

Automatic (top k) vs. Automatic (new strategy)
Manual vs. Automatic (PS_EvalFull)

- Manual: 17.1%
- Automatic: 15.7%
- Automatic (word2vec): 15.7%
- Automatic (dist. last year): 15.7%

5 comparison runs submitted for 000Ex
Contribution of 0Ex in 10Ex task (PS_EvalFull)

5 comparison runs submitted for 010Ex

+OCR +0Ex 21.3%
+0Ex 20.2%
16.8%

MAP

ConceptBank
ConceptBankIDT
ConceptBankIDTEK0
ConceptBankIDTEK0OCRASR
ConceptBankIDTEK0OCR
Summary

- An enlarged concept bank involving *high-level concepts* such as activities and events does great help for event detection
- A wise strategy for picking up the right concepts given a large concept bank is key to the detection performance
Thank you!