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Abstract

This paper demonstrates the framework and results from the team “Florida International University - University
of Miami (FIU-UM)” in TRECVID 2016 [lI\] Ad-hoc Video Search (AVS) task [2|]. The following two runs were
submitted:

e M D _FIU_UM.16_1: CNN features + linear SVM + concept scores combination type |

o M_D_FIU_UM.16.2: CNN features + linear SVM + concept scores combination type I1

In both runs, the features are first extracted by the CNN (Convolutional Neural Network) structure of AlexNet
[3]. Then, using the linear SVM (Support Vector Machine) classifiers, the scores of each concept for the key
frames are generated. For run 1 and run 2, the scores from the aforementioned model are combined in different
ways for different queries. From the submission results, run 2 outperforms run 1. The submission details are listed
as follows.

e Class: M (Manually-assisted runs)

o Training type: D IACC & non-IACC non-TRECVID data)

e Team ID: FIU-UM (Florida International University - University of Miami)
e Year: 2016



1 Introduction

Previously in year 2015, the TRECVID project [4] includes a semantic indexing (SIN) task which aims to
recognize the semantic concept contained within a video shot. It has been well-acknowledged that there are
several challenges in the SIN task, such as data imbalance, scalability, and semantic gap [3, 16, [7, (8} 9} (10} [11} [12]].

In this year, the task was changed to the Ad-hoc video search (AVS) task which is to model the end user search
use-cases. Comparing to the SIN task, the new AVS task looks for not only the video segments that contain
persons, objects, activities, locations, etc. but also the video segments of their combinations.

The automatic annotation of semantic concepts in video shots can be an essential technology for retrieval,
categorization, and other video exploitations [[13} [14} [15} [16} 17, 18 [19, 20]. The semantic concept retrieval
research directions include (1) developing robust learning approaches that adjust to the increasing size and the
diversity of the videos, (2) fusing the information from other sources such as audio and text, (3) detecting the
low-level and mid-level features that have a high discriminating capability, etc. [21} 22, 23] 24} 25| 26, [2'7, 28]].

The size of the high-level semantic concepts provided by IACC remains the same as the SIN task of the previous
year, which has 346 concepts in total. For each of the 346 semantic concepts, a list of ground truth labels is
provided for training. Given the test collection (IACC.3), master shot reference, 30 Ad-hoc queries were released
by NIST for testing. Each query can be a combination of some of the 346 concepts and/or some other concepts
not included in the training set. Each participated group is allowed to submit a maximum of 1,000 possible shots
from the test collection for each query, which are ranked according to their likelihood of containing the target
query. The submission result is rated by using the mean inferred average precision (mean xinfAP) [29] based on
the assessment of a 2-tiered random sampling (1-200@100% and 201-1000@11.1%).

This paper is organized as follows. Section [2| describes our proposed framework and the specific approaches
utilized for each run. Section [3|shows the submission results in details. Sectiond]summarizes the whole paper and
proposes some future directions to pursue and plan for next year.

2 The Proposed Framework

Our framework of the TRECVID 2016 AVS task is shown in Figure |1} In this year, key frames are already
extracted from the videos in the IACC.3 collection and are provided to the participants. Thus, the key frame
extraction step is skipped; while the key frames extracted in the previous years are used for training.

2.1 CNN Feature Extraction

Ten kinds of low-level key frame features were extracted from each frame in the training and testing data last
year. In this year, we use a pre-trained deep learning model, Alexnet [3]], a Convolutional Neural Network (CNN)
structure trained on the ImageNet database for object feature extraction. AlexNet contains five convolutional layers
and three fully-connected layers as shown in Figure|l} CNN features are extracted from all the training and testing
key frames from the 8¢/ layer, i.e., the output layer with 1,000-dimensions. The Alexnet structure is well trained
and proven with great performance.

2.2 Classification

After feature extraction, feature vectors are normalized for each key frame. Support Vector Machine (SVM),
one of the state-of-the-art algorithms in the data mining area [30, 31} 32} 133]] including multimedia classification, is
used for classification and concept score generation. The general idea of SVM is to build a separating hyperplane
to classify the data instances so that the geometric margin is maximized. For efficiency, linear kernels are adopted
in our proposed framework.
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Figure 1. The proposed framework for the Ad-hoc video search task



2.3 Query Formulation and Score Combination

Our two runs are both manually-assisted runs. For an initial ad-hoc query, a group member formulates it into
a combination of concepts based on its topic and query interface without the knowledge of the collection or the
search results. For queries containing the concepts not included in the 346 concepts from the training set (e.g.,
the concept “guitar” in “501 Find shots of a person playing guitar outdoors”), a similar concept like “music
instruments” is selected. For run 1 and run 2, different weights are used for the score combination based on our
empirical studies.

3 Experimental Results
3.1 Data

Given the information (including the IACC.3 test collection, master shot reference, and 30 Ad-hoc queries)
released by NIST and the concept definitions, a list of at most 1000 shot IDs from the test collection for each ad-
hoc query was returned and ranked according to their likelihood of containing the target query. TRECVID 2016
test data set (IACC.3) contains 4,593 Internet Archive videos with the durations between 6.5 and 9.5 minutes
(144GB, 600 hours in total). The train data set combines the development and test data sets from the 2010 to 2015
issues of the SIN task, namely the IACC.1.tv10.training, IACC.1.A-C, and IACC.2.A-C data sets. Each contains
about 200 hours of videos drawn from the IACC.1 and IACC.2 collections using videos with durations ranging
from 10 seconds to (3.5 to 6.4) minutes, respectively.

The overall framework of the TRECVID 2016 AVS task contains three stages:

1. Model training: using TRECVID 2010-2012 training videos as the training data.

2. Model evaluation: using TRECVID 2013-2015 training videos as the testing data to evaluate the framework
and tune the parameters of the models.

3. Model testing: using TRECVID 2010-2015 training videos as the TRECVID 2016 training data, and
TRECVID 2016 testing videos as the testing data to generate the ranking results for the submission.

3.2 Evaluation

A subset of the submitted ad-hoc query results (20) announced after the submission date were evaluated by the
assessors at NIST pooling and sampling. Measures (indexing) are shown as follows [34].

1. Mean extended inferred average precision (mean xinfAP) [29]] which allows the sampling density to vary so
that it can be 100% in the top strata. This is the most important one for average precision.

2. As in the past years, other detailed measures based on recall and precision are generated and given by the
sample_eval software provided by the TRECVID team.

3.3 Performance

All of the measures below were based on the assessment of a 2-tiered random sampling (1-200@100% and
201-1000@11.1%) of the full submission pools and the sample_eval software was used to infer the measures.

Figure 2] and Figure [3] present the performance of our ad-hoc query video search results. The x-axis is the
concept number; while the y-axis is the inferred average precision. More clearly, Table[I|shows the inferred mean
average precision (MAP) values of the first 5, 10, 15, 20, 30, 100, 200, 500 and 1000 shots. The inferred true shots
and mean xinfAP are shown in Table 2l
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Framework 5 10 15 20 30

100

200

500

1000

M_D_FIU_.UM.16.1 0.220 0.180 0.149 0.132 0.111
M_D_FIU.UM.16.2 0.220 0.183 0.151 0.132 0.112

0.070 0.056 0.046 0.032
0.076 0.062 0.053 0.039

Table 1: The MAP values at first n shots for all 2 runs



Framework Inferred true shots returned Mean xinfAP
M_D_FIU.UM.16_1 949 0.015
M_D_FIU.UM.16.2 1177 0.017

Table 2: Inferred true shots returned and Mean xinfAP

4 Conclusion and Future Work

In this notebook paper, the framework and results of team FIU-UM in TRECVID 2016 AVS task are summa-
rized. It can be seen that there are a lot of improvements that need to be done based on the results. The following
directions will be investigated.

e In our framework, only global features are utilized. The object-level features can also be explored by R-
CNN.

o SVM classifiers need to be adopted to address the data imbalance issue.
e Some other advanced CNN structures can be integrated to reach a better performance.

e More training data should be collected by a general purpose search engine like Google using the query
definition to further improve the retrieval accuracy.

The second stage of the AVS task, namely concept combination and score fusion make this task a totally new
one comparing to the previous SIN task. It will be helpful to exchange ideas and thoughts with other groups so
that novel approaches can be developed for further performance improvement.
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