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Abstract

We report on our system used in the TRECVID 2016 Multimedia Event Detection
(MED) and Ad-hoc Video Search (AVS) tasks. On the MED task, the CMU team
submitted runs in 000Ex, 010Ex and 100Ex settings for the Pre-specified Events.
On the AVS task, the CMU team submitted runs for fully-automatic system with
no annotation condition.

1 MED System

There are 3 tasks in MED this year: 000Ex, 010Ex and 100Ex. We designed two different systems
for 000Ex task and 010Ex/100Ex task. The 000Ex task system is very different from the other since
it does not utilize any training data. In the following section, we will describe our systems separately.

1.1 010Ex/100Ex System

The MED system for 010Ex and 100Ex consists of feature representations, model training, model
transformation and fusion. System components are shown in Figure 1. We extract a variety of
low-level and high-level features for feature representations. Here we describe these components in
detail.

Low-level Features We extract the standard MFCC features and encode them using bag-of-word
representations. Improved Dense Trajectories are extracted using the standard library [13]. Two
deep convolutional neural network (DCNN) features, the VGG net [9] and the Residual net [3],
are extracted. We use the 19-layer version of the VGG net and 152-layer of the Residual net. We
concatenate the features of the fully connected layers (fc6 and fc7) of VGG net and the features of the
pool5 and prob layers of the Residual net. We first extract DCNN features from the keyframes of the
videos then use average-pooling to get video-level features. We utilize explicit feature mapping [12]
(order 3 with intersection kernel) to expand the DCNN features into higher dimension to avoid using
kernel classifiers for speeding up.

High-level Features The SIN [1], YFCC [10] and Sports1M [6] high-level features are extracted
using last year’s improved dense trajectories based system. These three semantic features are
concatenated to form as IDT-Semantic feature. We train new semantic features using dataset from
FCVID [5] and Activity Net [2]. A total of over 110k videos of 439 classes from these two dataset
are utilized to train models using self-paced curriculum learning [7; 4]. The low-level feature we use
is 19-layer VGG net with explicit feature mapping as before. The semantic features are concatenated
into a 439-dimensional features as VGG19-Semantic for the final runs.

Model Training After feature representations are ready for each video, we train one-versus-all SVM
models with self-paced curriculum learning [7; 4]. Noted that the miss videos from the event kit are
used in the training and they are considered as "hard" samples that the model will learn later in the
process. The hyper-parameters of the models are set via k-fold cross-validation (5-fold for 010Ex,
10-fold for 100Ex).



Figure 1: MED 010Ex/100Ex system components. The light green components or features are new
compared to last year’s system.

Table 1: Features used in our 010Ex/100Ex system. BoW: bag-of-words representation. DCNN:
Deep Convolutional Neural Network

Low-level Features High-level Features

Feature Representations

MFCC (BoW)
Improved Dense Trajectories [13]
DCNN - VGG Net [9]
DCNN - Residual Net [3]

Semantic Indexing Concepts (SIN) [1]
YFCC [10]
Sports1M [6]
FCVID [5]
Activity Net [2]

Model Transformation and Weighted Fusion We transform the SVM models into linear primal
form in order to speed up the event search phrase. A weighted late fusion of all the output of feature
models is used to produce the final results. The weights of the late fusion are learned through k-fold
cross-validation (5-fold for 010Ex, 10-fold for 100Ex).

1.1.1 Submitted Runs

p-crossVal This is the primary run that utilizes all features and train one-versus-all SVM models
using self-paced curriculum algorithm with all positive, miss and background videos. The training
algorithm is an iterative process and the best model is selected based on cross-validation.

c-selfVal In this run, all features are utilized and trained with standard SVM algorithm using all the
videos in the event kits.

Figure 2: MED 000Ex system components.



Figure 3: AVS system components.

1.2 000Ex System

The 000Ex system takes the textual event kit as the input, and outputs a ranked list of relevant videos.
This year’s system, as shown in Figure 2, is much simpler than last year’s. During semantic query
generation, we use stemming and word2vec to match the event kits’ word to the semantic feature
vocabulary, and form a linear regression model for each semantic feature. The semantic features are
extracted as in the 010Ex/100Ex system. During event search phrase, the final result is a weighted
fusion of the two semantic feature models’ output. The weights of the fusion is empirically set based
on the observation that the VGG19-Semantic features are better than the IDT-Semantic so we set the
weights to be 6 to 4.

2 AVS System

In this year’s new Ad-hoc Video Search task, we design a fully-automatic webly-label learning system
that requires no annotation to perform a user search on the test set. Detailed algorithm for curriculum
design and model training can be referred to our webly-labeled learning paper [7].

2.1 System Description

Our system consists of video collection, feature extraction, curriculum design, model training and
query search as shown in Figure 3.

Video Collection Since our system requires no manual annotation for ad-hoc queries, it automatically
collects Internet videos based on the textual queries for training query models. Given a user query,
our system first refines the queries (currently we only strip out the "find shots of" prefix of the official
queries) suitable for the video crawler to search for relevant videos on popular video hosting sites
like Youtube using their search engine API. Then the system downloads these videos along with
their user-generated textual metadata (including titles, descriptions, comments, etc.) into our Internet
Video Collection. The test videos (IACC.3) can also be included in this collection since they too have
metadata. However, we didn’t use that in our submission due to the quality being too low (very few
meaningful metadata in the IACC.3 data).

Feature Extraction We extract keyframe-level deep convolutional neural network - VGG-19 net [9]
features including fc6/fc7 layers and the fc7 layer features of the C3D [11] net and then form video-
level representations by average-pooling. Explicit feature mapping [12] (order 3 with chi-square



kernel) is used to expand the features into higher dimension to avoid using kernel classifiers for
speeding up.

Curriculum Design In curriculum design phrase, our system tries to rank the training videos by their
relevance to the query from the Internet Video Collection based on the prior knowledge extracted
from their textual metadata. Specifically, we consider each video’s metadata as a document and utilize
word2vec [8] and BM25 algorithm to retrieve the relevant videos. We use a phrase table extracted
from GoogleNews corpus for word tokenization.

Model Training In model training phrase, we utilize webly-labeled learning algorithm [7] to learn
one-versus-all query model, where the model is refined iteratively from easy to hard samples. The
best model is selected based on empirically setting the selection threshold to 0.5 (It means that we
will select the model trained with half of the total collection retrieved during the curriculum design
phrase). The final model is transformed to primal form to speed up query search.

Query Search Finally, after query models are trained, we apply them to the test video shots that are
longer than 3 seconds. Average late fusion is used for the final results.

2.2 Submitted Runs

INF_CMU_c3d+vgg This run utilizes the full AVS system and the final result is computed with
average fusion of the output of VGG net and C3D net models.

INF_CMU_vgg This run uses the full AVS system but with only VGG net features.

INF_CMU_vgg_batchTrain This run utilizes the videos retrieved during curriculum design phrase
as positive samples and trains a standard one-versus-all SVM model using VGG net features.

INF_CMU_semantic This run uses our MED 000Ex pipeline, where we match the text query to our
semantic feature vocabulary to form a linear regression model of the semantic features extracted from
the test video shots. The semantic features include 1433 + 439 concept detectors trained from the
YFCC [10], SIN [1], Sports1M [6], FCVID [5] and Activity Net [2] datasets.
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1 Introduction

We develop a mixed strategy to tackle different event types in the surveillance event detection. As Embrace, Pointing and Cell2Ear
events have strong static visual cue, i.e. key pose, we propose a object detection approach. For other event types, we use the previous
year’s solution which predict event based on video shots.

2 Methodology

2.1 Key Pose detection for Embrace, Pointing and Cell2Ear

First, we sample one frame per second for Embrace, Pointing and Cell2Ear events. On this frames, we manually labeled the bounding
box for the corresponding people involved in the event. Altogether we get 1, 853 bounding boxes for Embrace event, 2, 518 bounding
boxes for Pointing event and 1, 391 bounding boxes for Cell2Ear event. We treat key pose as a special kind of object and reduce
key pose detection problem to object detection problem. We use Faster-RCNN[1] to learn the key pose detection for Embrace and
Pointing.

To discriminate Embrace, Pointing and Cell2Ear poses from other poses, we add an additional class called other pose as hard
negatives. The label of this class is automatically generated from the pre-trained person detector. To be specific, we use the person
class detector from Faster-RCNN trained on MSCOCO. We threhold the person class output by score 0.8. As shown in Figure 1,
Faster-RCNN produces reasonable outputs on all camera scenes in SED.

In the test stage, we predict pose on images sampled per 10 frames. We set the threshold for the score at 0.1. Finally we apply average
pooling on striding windows of width 50 frames and stride 50 frames.

2.2 Shot Classification for Other Events

We extract non-overlapping 25-frame shots from videos. We extract Dense Trajectory Feature[2] and train a multi-class SVM for
other event detection following our last year submission.

3 Experiment

To train Faster-RCNN, we finetune it from a VGG16-based Faster-RCNN pretrained on MSCOCO. We report the average precision
(AP) of Embrace, Pointing and Cell2Ear pose detection. We use AP as it is comparable to other object detector performance on
PASCAL and MSCOCO. The test dataset is a subset of Eev08-1 by sampling images without Embrace, Pointing and Cell2Ear event
to keep its ratio to images with Embrace, Pointing and Cell2Ear at 6 : 1. Here we note that on the real video test dataset the negative
to positive ratio is around 921 : 1, much larger than the our sampled image test set. Fase positive is the major issue for the relatively
low performance of current algorithm.

As shown in table 1, the performance of Embrace, Pointing and Cell2Ear is much lower than the object detector’s performance
reported on PASCAL and MSCOCO dataset. It indicates that Embrace, Pointing and Cell2Ear pose detection is much harder than
general object detection. Considering that embrace and pointing pose is more find-grained than person detection, it is natural that
directly applying Faster-RCNN doesn’t achieve good performance.

In addition to evalute the performance on image test set, we also evaluate the result on real video test set Eev08. As shown in table 2,
we see that our algorithm achieves promising results for Embrace event on actual DCR. We further decompose the performance by
actual RFA and actualPMiss to study the cause behind low performance of Pointing and Cell2Ear. We find that the major issue with
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(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM5

Figure 1: Person Detection on SED
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Cell2Ear is that the model misses many positive instance as actuallPMiss is very high and it only detects 12 true positives. As for
Pointing event, the model doesn’t perform well on either actualRFA or actual PMiss, leading to the bad overall result.

Table 1: average precision of pose detection
Embrace 0.425
Pointing 0.263
Cell2Ear 0.024

Table 2: Evaluation on Eev08 by official metrics
actualDCR minDCR actualRFA actualPMiss ]CorDet

Embrace 0.7335 0.7006 40.93 0.529 139
Pointing 0.9648 0.9550 22.33 0.853 254
Cell2Ear 0.9901 0.9308 5.57 0.962 12
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Abstract

We report our video hyperlinking system which utilizes
mutlimodal information. The major componet of our sys-
tem is the language-aided multimodal retrieval (LAMAR)
framework which introduces the language as the interme-
diate video representation. Our submissions are combina-
tions of multimodal features and retrieval methods under
the framework of LAMAR. The results on development set
and test set shows that LAMAR significantly outperforms
the unimodal method.

1. Introduction
Most content-based video retrieval (CBVR) tasks focus

on the similarity search given one event description. For
example, the multimedia event detection (MED) task at
TRECVID is aimed to retrieve videos that contains the de-
scribed events; the surveillance event detection (SED) task
at TRECVID is targeted to detect observations of events
from surveillance video stream. In both of MED and SED,
each query concentrates on just one type of concept or
event. However, the video, as a very rich information
source, usually contains numerous events or concepts. For
example, the street-view video stream might include infor-
mation from the simple concept such as people, cars, dogs
to the compound event such as busking, traffic accident and
so on.

On the other hand, CBVR benefits from the comple-
mentary information from diverse modalities of videos.
However, recent benchmarks of VH at MediaEval and
TRECVID show that the unimodal method on the speech
channel is still dominating the VH systems. Many efforts of
adding more modalities fail to improve the performance. In
addition to the multimodal retrieval, crossmodal retrieval is
another desired feature. For instance, a concept presented
in the audio channel should be used to search in the visual
channel.

The current limitations of VH research drive the inspi-
ration of language-aided multimodal retrieval (LAMAR).

As the name suggests, LAMAR employs the natural lan-
guage, rather than a global numerical vector, as the repre-
sentation of video contents. For instance, given a street-
view video clip, a traditional CBVR system might represent
it with a 1024-dimensional vector. Instead, LAMAR might
represent it with a set of natural language description. E.g.,
“A man with white shirt is making a phone call”, “A Scot-
tie dog is walking”, “A red phone booth”, “A textual word
‘Starbucks’”, “A voice saying ‘how are you doing?’”, etc..
This natural language representation layer provides multi-
ple benefits including

• Offering a rich and complete distributed representa-
tion space: the universal representation capability of
natural language offers a well-suited representation
space. Besides, the distributed nature of language
keeps the local concepts/events individually rather
than squeeze them into a global representation. This
property accommodates LAMAR well in the VH set-
ting.

• Mutlimodal/crossmodal retrieval in a common lan-
guage space: since the information from every modal-
ity is projected into the language space, searching in
the language space spontaneously renders the multi-
modal/crossmodal retrieval.

• Transfer learning from the progress of textual re-
trieval: natural language processing and textual re-
trieval have achieved significant progress. LAMAR
can easily transfer these advances into the multimodal
domain. For example, a semantic word embedding
(e.g. word2vec) can help group the similar concepts
together.

• Naturally interpretable results: LAMAR can easily
trace back the relevance ranking to the intermediate
language representation layer. This quality leads to a
more interpretable system.

1
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Figure 1. The architecture of LAMAR

2. Methods

The general approach of VH includes two steps: anchor
representation and target search [13]. LAMAR follows the
same procedure. Figure 1 shows the overall architecture
of LAMAR. The anchor representation step corresponds
to video textual representation (VTD) generation, during
which we mapped the audio and visual information into
natural language space separately. For the audio part, we
use the acoustic speech recognition (ASR) to extract speech
script from the soundtrack. For the visual part, we ap-
ply frame content summarization (FCS) on every keyframe
with various visual-to-text methods such as the image con-
cept detection[9], dense image captioning[6], and natural
scene OCR[3][5]. In addition to the content-based infor-
mation, we also incorporate the metadata such as title, tags
and user-generated description into the VTD. The videos
are converted to The target search step in LAMAR is a
textual search engine. We integrated various methods in
textual search engine from vector space models (e.g. TF-
IDF[7]) to neural network based models (e.g. word2vec
embedding[12]).

In the following subsections, we present the details in
frame content summarization and textual search engine.

2.1. Frame Content Summarization(FCS)

Frame Content Summarization is for generating the vi-
sual content description for each keyframe. We combine

three complementary methods: image concept detection,
dense image caption, and natural scene OCR.

• Image Concept Detection: it comes with the dataset
package. It provides the top-5 concepts and scores for
each keyframe. The concept is from AlexNet trained
on ImageNet dataset[9]. We use the concept words as
the representation.

• Dense Image Caption: while the Image Concept De-
tection assumes the image contains a single concept,
the video frame can contain much richer information.
We employed the dense caption[6]. It generates de-
scriptive caption from many local areas from a single
frame. With a threshold, we extract the captions with
a high score as the representation.

• Natural Scene OCR: besides the object con-
cept/caption, there are many textual characters in
the video. To extract this, we use an R-CNN style
model to do natural scene OCR. Compared to the
traditional OCR, which performs on a constrained
scanned documents images, natural scene OCR is
much more robust to the background noise and
distortion. It first extracts some text proposals to
localize the text areas[3]. Then a CNN trained on the
dictionary is applied to recognize the word on those
areas[5]. We take the high score words recognized as
the representation.
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Figure 2. The Frame Content Summarization in LAMAR

We consider the FCS as an extensible module in
LAMAR. Under this framework, many recent research ef-
forts on bridging video/image and text, such as image
captioning[8], video captioning[16], visual storytelling [4],
and so on, can easily fit in the FCS to build a better VH sys-
tem. TRECVID 2016’s pilot task, video to text (VTT) [1],
can potentially benefit the research of video hyperlinking.

2.2. Target Search

After getting the video textual description, we treat each
video as a text document. The target search is a textual
search engine. Regarding the representation of the text doc-
uments, we categorize our method into two groups, (a) vec-
tor space models and (b) word embedding based methods.
For all the document representation methods, we use the
cosine similarity as the relevance score.

2.3. Vector Space Models

The vector space models are the models represent the
document as a vector of terms. It means each dimen-
sion of the vector corresponds to a term in the vocabu-
lary. The value of on each dimension depends on various
weighting method. The most famous one is the TF-IDF
weights[7]. We explore various weighting models includ-
ing BB2, BM25, DFR-BM25, DLH, DLH13, DPH, DFRee,
Hiemstra-LM, IFB2, In-expB2, In-expC2, InL2, LemurTF-

IDF, LGD, PL2, and TF-IDF1.

2.4. Word Embedding Based Models

This document representation is built on the single word
representation. The word2vec embedding[12] shows un-
precedented performance on many tasks. For each word
in the documents, it trained a shallow neural network to
predict nearby words. Despite its simplicity, it captures
amazingly complex relationship among the terms such as
v(king)− v(man) ≈ v(queen)− v(woman). This prop-
erty can help cluster similar concepts together. After map-
ping the words into embedding space, we take the average
pooling to get the document representation.

3. Experiments

We perform the experiment on the development anchors
with various feature combinations and method choices.
Here are some details about our experiments.

3.1. Dataset

The TRECVID 2016 Video Hyperlinking dataset con-
sists of 14,838 videos for a total of 3,288 hours from blip.tv.
The data is accompanied by metadata, two kinds of ASR

1See http://terrier.org/docs/v4.1/javadoc/org/
terrier/matching/models/package-summary.html for
details of each model

http://terrier.org/docs/v4.1/javadoc/org/terrier/matching/models/package-summary.html
http://terrier.org/docs/v4.1/javadoc/org/terrier/matching/models/package-summary.html


transcripts (generated by LIMSI [10], LIUM [15] respec-
tively), image concept detection from AlexNet[9].

The development set contains 28 query anchors. For
each of them, a set of ground-truth anchors is provided. The
test set contains 94 query anchors, which are for the final
evaluation in the competition.

3.2. Experiment Setting

We use the fixed length segmentation of 50 seconds to
convert videos into short video segments. For each segment,
we run the FCS on the keyframes inside the segment. We
use Terrier IR system[11] with default parameters for the
vector space models. We use the word2vec model trained
on Google News dataset2.

4. Results

Method Metric O U2 S2 S6 D C O+M S6+M D+M O+D O+S6 D+S6 O+D+M O+S6+M D+S6+M O+S6+D
BB2

MAiSP

0.0376 0.0138 0.0127 0.0175 0.0079 0.0030 0.0557 0.0470 0.0240 0.0141 0.1058 0.0051 0.0444 0.0933 0.0251 0.0316
BM25 0.0368 0.0128 0.0126 0.0164 0.0077 0.0034 0.0515 0.0486 0.0117 0.0165 0.1044 0.0069 0.0408 0.0940 0.0144 0.0423

DFR_BM25 0.0363 0.0135 0.0131 0.0168 0.0077 0.0034 0.0537 0.0486 0.0117 0.0162 0.1042 0.0072 0.0439 0.0940 0.0144 0.0411
DLH 0.0332 0.0201 0.0199 0.0219 0.0041 0.0052 0.0511 0.0527 0.0179 0.0175 0.1021 0.0101 0.0356 0.0963 0.0204 0.0353

DLH13 0.0313 0.0195 0.0195 0.0229 0.0070 0.0061 0.0523 0.0520 0.0197 0.0179 0.1061 0.0104 0.0371 0.0977 0.0261 0.0338
DPH 0.0169 0.0198 0.0194 0.0233 0.0096 0.0065 0.0544 0.0543 0.0219 0.0144 0.1076 0.0115 0.0358 0.0953 0.0264 0.0311
DFRee 0.0217 0.0194 0.0194 0.0218 0.0088 0.0063 0.0561 0.0541 0.0262 0.0180 0.1062 0.0113 0.0413 0.0982 0.0320 0.0316

Hiemstra_LM 0.0304 0.0199 0.0197 0.0193 0.0159 0.0054 0.0464 0.0584 0.0482 0.0183 0.0922 0.0242 0.0402 0.0942 0.0511 0.0761
IFB2 0.0378 0.0139 0.0128 0.0176 0.0098 0.0029 0.0578 0.0479 0.0242 0.0165 0.1018 0.0063 0.0428 0.0926 0.0264 0.0445

In_expB2 0.0378 0.0139 0.0124 0.0172 0.0086 0.0029 0.0569 0.0477 0.0229 0.0165 0.1038 0.0054 0.0464 0.0929 0.0246 0.0374
In_expC2 0.0375 0.0132 0.0113 0.0144 0.0076 0.0029 0.0547 0.0473 0.0221 0.0165 0.1034 0.0049 0.0448 0.0933 0.0235 0.0362
InL2 0.0366 0.0138 0.0140 0.0175 0.0077 0.0035 0.0565 0.0485 0.0123 0.0163 0.1058 0.0075 0.0428 0.0948 0.0158 0.0379

LemurTF_IDF 0.0368 0.0157 0.0174 0.0222 0.0074 0.0038 0.0506 0.0517 0.0333 0.0164 0.0953 0.0114 0.0429 0.0937 0.0360 0.0680
LGD 0.0325 0.0199 0.0188 0.0209 0.0060 0.0059 0.0566 0.0525 0.0277 0.0208 0.1077 0.0092 0.0418 0.0967 0.0322 0.0337
PL2 0.0359 0.0100 0.0111 0.0135 0.0058 0.0029 0.0510 0.0470 0.0107 0.0173 0.1044 0.0064 0.0374 0.0945 0.0125 0.0368

TF_IDF 0.0367 0.0128 0.0128 0.0162 0.0075 0.0034 0.0554 0.0480 0.0110 0.0162 0.1054 0.0064 0.0405 0.0940 0.0129 0.0365
word2vec 0.0231 0.1242 0.1038 0.1137 0.0151 0.0152 0.0500 0.0858 0.0128 0.0128 0.0816 0.0057 0.0112 0.0819 0.0147 0.0085
mean 0.0329 0.0221 0.0206 0.0243 0.0085 0.0049 0.0536 0.0525 0.0211 0.0166 0.1022 0.0088 0.0394 0.0940 0.0240 0.0390

O+S6+D+M C+M O+C S6+C D+C O+C+M S6+C+M D+C+M O+S6+C D+S6+C O+D+C O+D+C+M O+S6+C+M D+S6+C+M O+S6+D+C O+S6+D+C+M
BB2 0.0691 0.0344 0.0327 0.0070 0.0105 0.0538 0.0424 0.0236 0.0693 0.0096 0.0179 0.0337 0.0865 0.0291 0.0349 0.0642
BM25 0.0736 0.0358 0.0381 0.0083 0.0109 0.0491 0.0436 0.0116 0.0798 0.0106 0.0246 0.0346 0.0879 0.0170 0.0454 0.0680

DFR_BM25 0.0728 0.0363 0.0350 0.0085 0.0107 0.0503 0.0440 0.0117 0.0804 0.0106 0.0243 0.0340 0.0875 0.0173 0.0442 0.0683
DLH 0.0671 0.0425 0.0385 0.0149 0.0050 0.0473 0.0475 0.0169 0.0878 0.0102 0.0201 0.0298 0.0876 0.0196 0.0409 0.0672

DLH13 0.0718 0.0425 0.0337 0.0136 0.0158 0.0484 0.0489 0.0201 0.0829 0.0121 0.0233 0.0321 0.0890 0.0236 0.0424 0.0663
DPH 0.0690 0.0430 0.0261 0.0131 0.0162 0.0501 0.0491 0.0195 0.0791 0.0120 0.0233 0.0311 0.0884 0.0254 0.0371 0.0654
DFRee 0.0700 0.0428 0.0294 0.0128 0.0144 0.0500 0.0496 0.0259 0.0804 0.0114 0.0254 0.0331 0.0907 0.0302 0.0386 0.0637

Hiemstra_LM 0.0805 0.0451 0.0348 0.0123 0.0208 0.0428 0.0492 0.0435 0.0812 0.0214 0.0286 0.0373 0.0847 0.0460 0.0714 0.0756
IFB2 0.0730 0.0348 0.0320 0.0069 0.0121 0.0528 0.0421 0.0245 0.0712 0.0111 0.0240 0.0398 0.0867 0.0294 0.0451 0.0678

In_expB2 0.0715 0.0345 0.0318 0.0068 0.0112 0.0531 0.0428 0.0238 0.0713 0.0096 0.0216 0.0377 0.0869 0.0277 0.0389 0.0674
In_expC2 0.0728 0.0327 0.0360 0.0059 0.0102 0.0538 0.0426 0.0236 0.0711 0.0077 0.0203 0.0369 0.0867 0.0259 0.0391 0.0675
InL2 0.0738 0.0373 0.0353 0.0088 0.0108 0.0515 0.0435 0.0118 0.0803 0.0111 0.0239 0.0341 0.0882 0.0197 0.0430 0.0675

LemurTF_IDF 0.0755 0.0375 0.0329 0.0153 0.0133 0.0515 0.0467 0.0325 0.0893 0.0127 0.0232 0.0437 0.0897 0.0350 0.0666 0.0748
LGD 0.0713 0.0399 0.0380 0.0126 0.0138 0.0518 0.0481 0.0273 0.0805 0.0110 0.0256 0.0347 0.0900 0.0308 0.0389 0.0637
PL2 0.0699 0.0342 0.0362 0.0087 0.0113 0.0458 0.0422 0.0096 0.0835 0.0077 0.0224 0.0304 0.0888 0.0160 0.0426 0.0666

TF_IDF 0.0722 0.0362 0.0373 0.0083 0.0107 0.0508 0.0437 0.0108 0.0813 0.0087 0.0223 0.0310 0.0885 0.0148 0.0421 0.0669
word2vec 0.0146 0.0322 0.0202 0.0884 0.0082 0.0325 0.0923 0.0127 0.0808 0.0088 0.0077 0.0102 0.0849 0.0143 0.0073 0.0114
mean 0.0687 0.0377 0.0334 0.0148 0.0121 0.0491 0.0481 0.0206 0.0794 0.0110 0.0223 0.0332 0.0878 0.0248 0.0423 0.0643

Figure 3. MAiSP on Development Set

Method Metric O U2 S2 S6 D C O+M S6+M D+M O+D O+S6 D+S6 O+D+M O+S6+M D+S6+M O+S6+D
BB2

mAP

0.0383 0.0228 0.0153 0.0237 0.0025 0.0009 0.3565 0.0704 0.0191 0.0122 0.0990 0.0040 0.1910 0.3940 0.0178 0.0295
BM25 0.0487 0.0196 0.0158 0.0227 0.0032 0.0015 0.3221 0.0721 0.0148 0.0298 0.0914 0.0047 0.2041 0.3827 0.0175 0.0412

DFR_BM25 0.0449 0.0208 0.0166 0.0233 0.0027 0.0014 0.3439 0.0723 0.0146 0.0214 0.0913 0.0048 0.2146 0.3802 0.0170 0.0396
DLH 0.0372 0.0316 0.0285 0.0310 0.0033 0.0050 0.3175 0.0801 0.0246 0.0570 0.0878 0.0111 0.1500 0.3697 0.0366 0.0322

DLH13 0.0343 0.0313 0.0265 0.0310 0.0038 0.0096 0.3165 0.0806 0.0238 0.0297 0.0890 0.0127 0.1474 0.3803 0.0391 0.0300
DPH 0.0215 0.0307 0.0245 0.0313 0.0020 0.0098 0.3452 0.0820 0.0238 0.0102 0.0882 0.0139 0.1228 0.3735 0.0391 0.0286
DFRee 0.0242 0.0290 0.0236 0.0298 0.0023 0.0102 0.3715 0.0819 0.0262 0.0116 0.0867 0.0143 0.1400 0.3754 0.0400 0.0286

Hiemstra_LM 0.0404 0.0273 0.0246 0.0258 0.0014 0.0051 0.2273 0.0741 0.0584 0.0326 0.0724 0.0234 0.2566 0.3646 0.0629 0.0914
IFB2 0.0383 0.0230 0.0156 0.0235 0.0026 0.0007 0.3549 0.0700 0.0195 0.0173 0.0949 0.0043 0.2223 0.3855 0.0188 0.0430

In_expB2 0.0384 0.0230 0.0152 0.0230 0.0024 0.0008 0.3573 0.0691 0.0188 0.0177 0.0973 0.0034 0.2211 0.3872 0.0166 0.0351
In_expC2 0.0389 0.0213 0.0138 0.0218 0.0022 0.0006 0.3566 0.0640 0.0170 0.0187 0.0955 0.0026 0.2238 0.3762 0.0145 0.0328
InL2 0.0447 0.0214 0.0190 0.0239 0.0027 0.0016 0.3450 0.0736 0.0150 0.0175 0.0927 0.0056 0.1876 0.3862 0.0198 0.0351

LemurTF_IDF 0.0533 0.0233 0.0243 0.0285 0.0042 0.0021 0.3129 0.0747 0.0392 0.0409 0.0907 0.0154 0.2457 0.3788 0.0459 0.0888
LGD 0.0358 0.0304 0.0266 0.0304 0.0043 0.0098 0.3460 0.0820 0.0265 0.0224 0.0904 0.0123 0.1553 0.3889 0.0372 0.0307
PL2 0.0488 0.0154 0.0130 0.0205 0.0023 0.0006 0.3232 0.0606 0.0139 0.0334 0.0890 0.0040 0.1580 0.3738 0.0168 0.0320

TF_IDF 0.0486 0.0199 0.0160 0.0226 0.0026 0.0014 0.3475 0.0713 0.0137 0.0178 0.0924 0.0040 0.1686 0.3821 0.0152 0.0331
word2vec 0.0372 0.0558 0.0664 0.0659 0.0518 0.1440 0.2411 0.1964 0.0189 0.0357 0.0433 0.0075 0.0134 0.1726 0.0217 0.0102
mean 0.0396 0.0263 0.0227 0.0282 0.0057 0.0121 0.3285 0.0809 0.0228 0.0251 0.0878 0.0087 0.1778 0.3677 0.0280 0.0389

O+S6+D+M C+M O+C S6+C D+C O+C+M S6+C+M D+C+M O+S6+C D+S6+C O+D+C O+D+C+M O+S6+C+M D+S6+C+M O+S6+D+C O+S6+D+C+M
BB2 0.2457 0.0443 0.1657 0.0089 0.0035 0.4394 0.0619 0.0167 0.1338 0.0057 0.0325 0.1969 0.5017 0.0202 0.0365 0.2805
BM25 0.2753 0.0510 0.2045 0.0126 0.0020 0.3759 0.0635 0.0129 0.1609 0.0049 0.0897 0.2190 0.4919 0.0190 0.0857 0.3226

DFR_BM25 0.2729 0.0531 0.1881 0.0129 0.0020 0.4057 0.0647 0.0128 0.1553 0.0049 0.0852 0.2145 0.4909 0.0190 0.0776 0.3203
DLH 0.2112 0.0593 0.1931 0.0221 0.0018 0.3541 0.0746 0.0292 0.1661 0.0085 0.0968 0.1731 0.4721 0.0354 0.0594 0.2651

DLH13 0.1899 0.0595 0.1720 0.0214 0.0085 0.3584 0.0772 0.0247 0.1627 0.0109 0.0674 0.2026 0.4833 0.0375 0.0492 0.2602
DPH 0.1722 0.0569 0.1218 0.0206 0.0098 0.3664 0.0760 0.0226 0.1462 0.0113 0.0396 0.1761 0.4656 0.0371 0.0377 0.2245
DFRee 0.1839 0.0580 0.1235 0.0210 0.0108 0.3657 0.0757 0.0223 0.1603 0.0123 0.0401 0.1863 0.4770 0.0364 0.0405 0.2485

Hiemstra_LM 0.3192 0.0574 0.2256 0.0191 0.0067 0.3221 0.0689 0.0510 0.1984 0.0233 0.2018 0.2931 0.4323 0.0616 0.2083 0.3981
IFB2 0.2864 0.0460 0.1768 0.0090 0.0035 0.4357 0.0610 0.0171 0.1327 0.0056 0.0693 0.2343 0.4986 0.0210 0.0743 0.3320

In_expB2 0.2700 0.0447 0.1701 0.0087 0.0021 0.4313 0.0610 0.0161 0.1344 0.0046 0.0513 0.2328 0.4950 0.0184 0.0557 0.3134
In_expC2 0.2553 0.0390 0.1754 0.0069 0.0017 0.4166 0.0550 0.0135 0.1257 0.0024 0.0557 0.2177 0.4793 0.0154 0.0517 0.2995
InL2 0.2608 0.0530 0.1806 0.0132 0.0022 0.4118 0.0654 0.0134 0.1595 0.0057 0.0632 0.2112 0.4961 0.0206 0.0633 0.3057

LemurTF_IDF 0.3129 0.0553 0.1676 0.0185 0.0071 0.4335 0.0692 0.0416 0.1484 0.0115 0.0870 0.3081 0.5141 0.0438 0.1544 0.3738
LGD 0.1972 0.0596 0.1792 0.0210 0.0106 0.4133 0.0772 0.0232 0.1636 0.0116 0.0478 0.2033 0.4977 0.0356 0.0449 0.2545
PL2 0.2038 0.0444 0.2009 0.0092 0.0016 0.3328 0.0552 0.0099 0.1490 0.0024 0.0724 0.1993 0.4689 0.0160 0.0510 0.2670

TF_IDF 0.2343 0.0514 0.1948 0.0126 0.0018 0.3932 0.0627 0.0117 0.1573 0.0038 0.0589 0.2020 0.4870 0.0169 0.0534 0.2839
word2vec 0.0213 0.3396 0.1711 0.0475 0.0164 0.3426 0.1938 0.0199 0.0429 0.0095 0.0155 0.0184 0.1720 0.0207 0.0096 0.0162
mean 0.2301 0.0690 0.1771 0.0168 0.0054 0.3881 0.0743 0.0211 0.1469 0.0082 0.0691 0.2052 0.4661 0.0279 0.0678 0.2803

Figure 4. mAP on Development Set

2Available at https://code.google.com/archive/p/
word2vec/

Method Metric O U2 S2 S6 D C O+M S6+M D+M O+D O+S6 D+S6 O+D+M O+S6+M D+S6+M O+S6+D
BB2

P@10

0.0471 0.0607 0.0536 0.0607 0.0071 0.0000 0.0964 0.1179 0.0536 0.0321 0.1179 0.0071 0.0679 0.1143 0.0464 0.0643
BM25 0.0529 0.0500 0.0464 0.0571 0.0107 0.0045 0.0857 0.1250 0.0429 0.0321 0.1179 0.0143 0.0357 0.1179 0.0357 0.0750

DFR_BM25 0.0588 0.0571 0.0464 0.0607 0.0107 0.0045 0.0857 0.1250 0.0429 0.0321 0.1179 0.0143 0.0536 0.1179 0.0357 0.0714
DLH 0.0529 0.0821 0.0714 0.0750 0.0071 0.0182 0.1000 0.1357 0.0571 0.0321 0.1179 0.0357 0.0429 0.1214 0.0857 0.0571

DLH13 0.0471 0.0714 0.0714 0.0786 0.0107 0.0318 0.0893 0.1357 0.0643 0.0286 0.1107 0.0393 0.0679 0.1143 0.0857 0.0607
DPH 0.0412 0.0679 0.0750 0.0786 0.0071 0.0318 0.0750 0.1429 0.0643 0.0250 0.1107 0.0357 0.0536 0.1143 0.0821 0.0643
DFRee 0.0471 0.0607 0.0643 0.0750 0.0143 0.0364 0.0786 0.1357 0.0643 0.0250 0.1071 0.0429 0.0679 0.1143 0.0821 0.0607

Hiemstra_LM 0.0471 0.0607 0.0714 0.0679 0.0071 0.0273 0.0750 0.1143 0.1000 0.0250 0.0750 0.0464 0.0464 0.0964 0.1071 0.0929
IFB2 0.0471 0.0607 0.0536 0.0607 0.0107 0.0000 0.0929 0.1179 0.0536 0.0286 0.1214 0.0143 0.0393 0.1179 0.0464 0.0714

In_expB2 0.0471 0.0607 0.0536 0.0607 0.0071 0.0000 0.1036 0.1143 0.0500 0.0321 0.1143 0.0107 0.0643 0.1179 0.0357 0.0679
In_expC2 0.0471 0.0607 0.0393 0.0571 0.0036 0.0000 0.1000 0.1000 0.0464 0.0357 0.1143 0.0071 0.0571 0.1143 0.0357 0.0714
InL2 0.0588 0.0571 0.0500 0.0607 0.0107 0.0045 0.0929 0.1286 0.0429 0.0321 0.1143 0.0179 0.0607 0.1179 0.0429 0.0679

LemurTF_IDF 0.0647 0.0536 0.0536 0.0714 0.0071 0.0091 0.0679 0.1214 0.0786 0.0321 0.1107 0.0429 0.0536 0.1143 0.0857 0.1000
LGD 0.0529 0.0714 0.0643 0.0750 0.0071 0.0318 0.1000 0.1357 0.0607 0.0286 0.1000 0.0357 0.0679 0.1071 0.0821 0.0607
PL2 0.0529 0.0321 0.0429 0.0429 0.0107 0.0000 0.0821 0.1036 0.0393 0.0357 0.1071 0.0107 0.0393 0.1143 0.0357 0.0607

TF_IDF 0.0529 0.0536 0.0429 0.0607 0.0107 0.0045 0.1000 0.1250 0.0393 0.0321 0.1107 0.0107 0.0643 0.1179 0.0357 0.0714
word2vec 0.0333 0.0857 0.0964 0.1143 0.0107 0.0214 0.0857 0.0893 0.0464 0.0179 0.1107 0.0179 0.0393 0.0857 0.0393 0.0321
mean 0.0501 0.0615 0.0586 0.0681 0.0090 0.0133 0.0889 0.1216 0.0557 0.0298 0.1105 0.0237 0.0542 0.1128 0.0588 0.0676

O+S6+D+M C+M O+C S6+C D+C O+C+M S6+C+M D+C+M O+S6+C D+S6+C O+D+C O+D+C+M O+S6+C+M D+S6+C+M O+S6+D+C O+S6+D+C+M
BB2 0.1071 0.0714 0.0400 0.0250 0.0071 0.0893 0.0929 0.0464 0.0821 0.0107 0.0429 0.0571 0.1036 0.0464 0.0571 0.1000
BM25 0.0857 0.0786 0.0320 0.0250 0.0036 0.1036 0.0964 0.0429 0.1036 0.0107 0.0357 0.0500 0.1000 0.0429 0.0607 0.0821

DFR_BM25 0.0893 0.0857 0.0320 0.0250 0.0036 0.0893 0.1000 0.0429 0.1036 0.0107 0.0357 0.0464 0.1036 0.0393 0.0607 0.0857
DLH 0.0679 0.1107 0.0360 0.0429 0.0036 0.0929 0.1357 0.0786 0.1107 0.0250 0.0321 0.0536 0.1107 0.0786 0.0607 0.0679

DLH13 0.0857 0.1071 0.0440 0.0393 0.0250 0.0893 0.1286 0.0607 0.0964 0.0321 0.0393 0.0464 0.1071 0.0750 0.0571 0.0821
DPH 0.0857 0.1036 0.0480 0.0393 0.0250 0.0714 0.1357 0.0571 0.0964 0.0250 0.0393 0.0500 0.1107 0.0679 0.0571 0.0750
DFRee 0.0929 0.1107 0.0560 0.0429 0.0286 0.0893 0.1429 0.0643 0.0893 0.0321 0.0357 0.0643 0.1036 0.0750 0.0500 0.0821

Hiemstra_LM 0.0750 0.1071 0.0320 0.0464 0.0250 0.0714 0.1214 0.1000 0.1000 0.0536 0.0393 0.0464 0.0964 0.1071 0.0929 0.0714
IFB2 0.0893 0.0714 0.0400 0.0286 0.0071 0.0893 0.0929 0.0464 0.0786 0.0107 0.0393 0.0500 0.1071 0.0500 0.0607 0.0821

In_expB2 0.0929 0.0714 0.0400 0.0286 0.0071 0.0893 0.0929 0.0464 0.0857 0.0107 0.0393 0.0500 0.1071 0.0464 0.0500 0.0857
In_expC2 0.0893 0.0571 0.0280 0.0214 0.0036 0.0929 0.0929 0.0429 0.0679 0.0036 0.0429 0.0464 0.1036 0.0393 0.0464 0.0857
InL2 0.0893 0.0786 0.0360 0.0250 0.0036 0.0893 0.1036 0.0429 0.1000 0.0143 0.0393 0.0500 0.1036 0.0429 0.0571 0.0857

LemurTF_IDF 0.0893 0.0786 0.0360 0.0393 0.0179 0.0929 0.1143 0.0857 0.0964 0.0214 0.0464 0.0500 0.1036 0.0929 0.0964 0.0857
LGD 0.1036 0.1107 0.0480 0.0464 0.0286 0.1036 0.1321 0.0643 0.0964 0.0250 0.0357 0.0607 0.1107 0.0786 0.0500 0.0786
PL2 0.0750 0.0643 0.0280 0.0179 0.0036 0.0893 0.0964 0.0321 0.0929 0.0036 0.0393 0.0500 0.1071 0.0393 0.0464 0.0714

TF_IDF 0.0857 0.0786 0.0320 0.0250 0.0036 0.0964 0.1000 0.0357 0.1071 0.0107 0.0393 0.0464 0.1036 0.0393 0.0536 0.0857
word2vec 0.0500 0.0286 0.0571 0.0500 0.0179 0.0607 0.0714 0.0357 0.0429 0.0214 0.0179 0.0286 0.0786 0.0429 0.0250 0.0393
mean 0.0855 0.0832 0.0391 0.0334 0.0126 0.0882 0.1088 0.0544 0.0912 0.0189 0.0376 0.0498 0.1036 0.0590 0.0578 0.0792

Figure 5. P@10 on Development Set

Feature Method MAiSP mAP P@10
O+S6+C+M Lemur TF-IDF 0.136 0.243 0.367

S6+M DPH 0.095 0.135 0.318
U2 Word2Vec 0.076 0.087 0.216

O+S6 LGD 0.078 0.104 0.243
O+S6 DPH 0.082 0.111 0.251

Table 1. Performance on Test Set

We report the mAP, precision at top-10, and MAiSP[14]
on both development set and test set. Figure 444 shows
the performance numbers on with different feature combi-
nations and methods. We use the following abbreviation:
O=Natural Scene OCR; U2=LIUM12 ASR; S2=LIMSI12
ASR; S6=LIMSI16 ASR; D=Dense Caption; M=Meta
Data. Table 1 shows our submission results. Note that pre-
vious best systems only use the ASR and metadata as the
feature and simple TF-IDF as retrieval method. Introducing
more modality by fusing retrieval results from different fea-
ture does not improve over the unimodal system[2]. In our
experiment on both development set and test set, the multi-
modal methods outperform unimodal methods by a signif-
icant margin. It shows that LAMAR can utilize the multi-
modal sources effectively.

5. Conclusions
In the paper, we present our language-aided multi-

modal retrieval (LAMAR) framework for video hyperlink-
ing. LAMAR introduces the natural language as the in-
termediate representation layer for video. LAMAR cure
the lameness of current VH system from two aspects.
First, it provides a distributed representation for the rich
concepts/events in the video. With such language rep-
resentation, multiple concepts/events in a single video
segment can be maintained throughout the retrieval pro-
cess. Second, LAMAR can automatically perform multi-
modal/crossmodal retrieval by searching in the same lan-
guage space. The experiment results on development set
and test set shows that LAMAR significantly outperforms

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/


unimodal methods.
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1 Introduction

As the video caption pilot task provides no training captions for videos, we treat it as an opportunity to test the generalization ability
of the caption models. That is, we don’t tune the models to consider “who”, “what”, “where” and “when” facets explicitly. To
be specific, we train four caption models on three public datasets and most of them achieve state-of-the-art result on these public
datasets. It shows that there are much space left to improve current state-of-the-art models by considering these four facets explicitly.

2 Methodology

Our submission includes four models trained on three public datasets: MSCOCO[3], MSVD[1] and MSR-VTT[8]. MSCOCO is a
popular image caption dataset used to benchmark image caption models. MSVD is a popular video caption dataset used to benchmark
video caption models. MSR-VTT is a recently released video caption dataset that is more diverse on video categories than MSVD
dataset.

2.1 Image Caption Model

We use the multimodal image caption model[4] on MSCOCO. The structure is illustrate in Figure 1. In test, we extract the middle
frame from the video and apply image caption model on it. The features used in this model include VggNet[6].

Figure 1: Multimodal image caption model

2.2 Hierarchical Recurrent Neural Encoder (HRNE) for Video Caption

Different from image, video contains not only spatial information but also temporal information. We use Hierarchical Recurrent
Neural Encoder (HRNE)[5] to incorporate temporal structure in the encoder. The structure is illustrated in Figure 2. We add attention
units in three different positions: between visual input and the LSTM filter, between the output of the filter and the second LSTM
layer, between the output of our HRNE and the description decoder. Please refer to work[5] for more detailed description. The
features used in this model include ResNet[2].
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Figure 2: Hierarchical recurrent nueral encoder

2.3 Category-aware Multi-modality Fusion Encoder (CMFE) for Video Caption

To build a video caption model that words on various real-world videos, we could not neglect the multi-modality nature of videos. We
design a category-aware multi-modality fusion encoder (CMFE) which does fusion adaptively for different categories. To be specific,
we use gating function gi of category vector s to switch feature fusion in different categories. The features used in this model include
ResNet[2], C3D[7], MFCC[].

gi = σ(U(i)s+B(i)) (1)

h0 =
∑
i

gi ◦ tanh(W(i)fi) (2)

where fi is feature i, s is the predicted category score vector. U(i),B(i),W(i) are the parameters to learn.

3 Experiment

Our submited four runs include:

INF.coco image caption model trained on MSCOCO
INF.hrne HRNE trained on VTT
INF.jiac-msvd CMFE trained on MSVD
INF.vtt.iresnet CMFE trained on VTT

We first verify that the submitted runs achieve state-of-the-art performance on the public dataset MSVD. As show in table ??, HRNE
(MSVD) and CMFE (MSVD) both achieve state-of-the-art performance on MSVD if they are trained on MSVD. However, the
performance of CMFE (VTT) trained on VTT is much worse than CMFE (MSVD). There are two factors that contribute to this
phenomenon. First, the distribution of videos are different between MSVD and MSR-VTT. Second, the language style is different
between MSVD and VTT.

Table 1: Performance on MSVD
method Bleu1 Bleu2 Bleu3 Bleu4 Meteor Cider

HRNE (MSVD) 81.1 68.6 57.8 46.7 33.9 -
CMFE (MSVD) 80.4 68.6 58.4 47.5 34.1 78.2
CMFE (VTT) 67.1 50.2 37.4 26.2 27.7 37.7

We compare the performance on the pilot task dataset in table 2. First the performance of CMFE (MSVD) on meteor drops signif-
icantly, 10%, from that on MSVD. The groundtruth on MSVD contains around 20 sentences for each video while the groundtruth
on the pilot task contains only 2 sentences for each video. This will cause meteor evaluation to drop to some extent as there are
fewer groundtruth sentence to match. But groundtruth sentence number is definitely not the only reason. The distribution of videos
and language style could also contribute to the performance drop. As videos from VTT cover most categories of videos online,
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video distribution is not likely to vary a lot between VTT and pilot task dataset. We will further verify this by manually labeling the
category on pilot task dataset. Then the remaining factor, language style, is likely to contribute the most to the performance drop. In
the groundtruth collecting of pilot task, annotators were asked to include and combine in one sentence, if appropriate and available,
four facets of the video they are describing. This is likely to cause the language style to be very different from the public datasets that
our models are trained on. Thus, we need to explicity model the four facets in the caption model to achieve better performance.

Table 2: Performance on Pilot task
method Bleu Meteor

MSCOCO 0.0073 0.1867
HRNE (VTT) 0.0140 0.2000

CMFE (MSVD) 0.0226 0.1974
CMFE (VTT) 0.0124 0.2083
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