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Abstract

The vireo group participates in 3 tasks: multimedia event detection, ad-hoc video search, video-to-text

description. In this paper, we will separately present frameworks for these tasks and discuss experimental

results.

Multimedia Event Detection (MED): We will present an overview and comparative analysis of our

system designed for the TRECVID 2016 [1] multimedia event detection (MED) task. We submit 12 runs,

of which 3 runs for the pre-specified zero example (PS-0Ex), 4 runs for the pre-specified ten examples (PS-

10Ex), 3 runs for the pre-specified hundred examples (PS-100Ex) and 2 runs for the ad-hoc ten examples

(AH-10Ex). We do not participate in the interactive run. This year we focus on two aspects: 1) Refining

concept bank by extending its vocabulary size and replacing its classifiers with the state-of-the-art deep

architecture; 2) Capturing visual scenario of video with a finer granularity object-level representation.

Among our 12 submitted runs, the following runs achieved the top-2 performances:

- VIREO MED16 MED16EvalFull PS 0Ex MED p-VisualTextualRernk 4: Zero-example system with

manually refined semantic query, highlighted concept reranking and late fusion with OCR (Best

0Ex performance).

- VIREO MED16 MED16EvalFull PS 10Ex MED p-Fus 4: 10-example system using Concept-Bank

feature and Object-VLAD video representation (Ranked 2nd on EvalSub/Full set in terms of Min-

fAP200).

- VIREO MED16 MED16EvalFull AH 10Ex MED p-fus 4: 10-example system using Concept-Bank

feature and Object-VLAD video representation (Ranked 2nd on EvalFull set and 1st on EvalSub

set in terms of MinfAP200).

Ad-hoc Video Search (AVS): For AVS, we adopt our successful zero-example MED system developed

in the last year. In addition, we add a new highlighted concept reranking feature to further enhance

human-in-the-loop. This technique allows a user to emphasize a group of concepts highlighting a specific

characteristic. For example, “outdoors” and “at night.” We submit a total of 6 runs, with variations

include (1) fully automatic or manually assisted query processing, (2) with or without highlighted concept

reranking, and (3) using concepts learned only from IACC data or not. The best runs in the respective

two training set types are:

- M D VIREO.16 5: Manually assisted query processing. Concept detectors of more than 10K which

are collected from several off-the-shelf public datasets.

- M A VIREO.16 3: Manually assisted query processing. 346 concept detectors are only learned from

IACC.1 and IACC.2 data themselves.



Video-to-Text Description (VTT): We only participate in the matching and ranking subtask. The

task here is to return for each video URL a ranked list of the most likely text description that correspond to

the video. This year we focus on the concept-based retrieval of sentence and inter-modality correspondence

learning by salient region selection. Our four runs are summarised below:

- Vireo-Average-VGG-C3D: Each video is represented by average pooling over the VGG [2] features

extracted from frames and text description is represented by the TCNN [3] feature. Stacked at-

tention network (SAN) [4] is adopted to learn the implicit alignment between visual and textual

features. Furthermore, C3D [5] is also employed for the extraction of motion features. Similarity

scores from the two SANs trained on VGG-TCNN and C3D-TCNN are averagely fused for the final

ranking.

- Vireo-Flat-VGG-C3D: Rather than average pooling, frame features are concatenated into one fea-

ture vector to preserve the unique information of different frames. Then, two SANs are trained on

the concatenated features, whose similarity scores are averagely fused for final ranking.

- Vireo-Fusion: To observe whether Vireo-Average-VGG-C3D and Vireo-Flat-VGG-C3D are comple-

mentary to each other, we further averagely fuse the scores from these two runs for ranking.

- Vireo-Concept: Each video is represented by our Concept-Bank feature and the detected concepts

are matched to the keywords in text descriptions based on a flexible phrase matching method, which

is combined with word similarities of WordNet [6] and weighting strategies, such as TF-IDF.

1 Multimedia Event Detection (MED)

Compared with our multimedia event detection system proposed in TRECVID 2015 benchmark, we

modify visual systems for PS-10Ex, AH-10Ex and PS-100Ex subtasks, whereas, keep the subsystem

for PS-0Ex. Specifically, the differences of visual systems are summarized as follows: 1) Hand-crafted

features (e.g., the improved dense trajectory [7]) are no longer used in visual system; 2) By including

ImageNet-Shuffel 13K [8], the size of concept bank is increased to 15,762 and parts of concept classifiers

are re-trained with the architecture of deep residual neural networks [9]; 3) A finer granularity object-level

video representation named Object-VLAD is introduced in our visual systems. Experiments conducted

on MED14-Test and MED16-EvalFull datasets verify the effectiveness of our modification. The next

section explains how to generate different modalities for our system. Section 1.1 and Section 1.2 describe

our systems and runs for the different amount of training examples, i.e., 0Ex, 10Ex, or 100Ex. Section

1.3 describes results and analysis. Section 1.4 concludes the MED section.

1.1 Modalities

In our system we use three types of modalities: visual, texutal and speech.

1.1.1 Visual

For our visual system, we first decompose each video into two-granularity levels – keyframe level and shot

level. The keyframe sampling rate is set to be one frame per two seconds and the time duration of shot

is set to be five seconds. For each video, we generate 7 kinds of high-level concept feature and 1 kind of

object-level deep feature. All the features used in our visual system are summarized as below:

- ImageNet 1000

We use the architecture of deep residual networks (i.e., ResNet-50) proposed by K. He [9] to train

ImageNet-1000 classifiers. The parameters of ResNet-50 are learned on ILSVRC dataset [10], which

is a subset of ImageNet dataset with 1.26 million training images for 1,000 categories. The neural

responses of the output layer (soft-max) for each keyframe are averagely pooled to form the video-

level feature vector.



- SIN 346

A set of 346 concept detectors fine-tuned with the ResNet-50 architecture on TRECVID-SIN 2014

dataset [11] is applied on all keyframes and averagely pooled to form a video-level representation.

- RC 497

Similar to [12], we select 497 concepts from the MED14 Research Collection dataset [13]. We manu-

ally annotate at most 200 positive keyframes for each concept and fine-tuned 497 concept detectors

using the RestNet-50 architecture. Same as the prior methods, we concatenate the responses of

the concept classifiers on each keyframe and averagely pool the resulting feature vectors to form a

video feature representation.

- Places 205

To capture the scenery information of multimedia events, we fine-tune 205 scene categories on MIT

places dataset [14] with the RestNet-50 architecture. The scenery concept responses are extracted

from each keyframe and further averagely pooled to generate the video-level representation.

- FCVID 239

To capture the action/motion information of multimedia events, 239 concept detectors are trained

with SVM on FCVID [15] dataset, which contains 91,223 web videos. Since concepts from this

dataset are mainly action/motion concepts annotated at video-level, we extract neural responses

from fc7 layers of AlexNet [16] for each frame and pool them across the temporal domain to

generate training features and train video-level concept detectors. We concatenate the responses of

205 concept detectors of an Image.

- Sports 487

487 concept detectors are trained with 3D CNN structure [5] on the Sport-1M dataset [17] containing

1 million videos. Similar to FCVID, Sports-1M are mainly action/motion concepts annotated at

video level.

- ImageNet-Shuffle 12988

In [8], P. Mettes et. al proposed to reorganize 21,814 classes of full ImageNet [10] dataset by merging

them into 12,988 categories for training a large-scale concept bank with GoogLeNet architecture [18].

We extract neural responses from output layer of the published ImageNet-Shuffle 13K-GoogLeNet

for each frame and averagely pool them across the temporal domain to generate video-level repre-

sentation.

To capture semantical meaning of multimedia event, we collect all the above concept features and

form a large Concept-Bank with 15,762 semantical concepts related to visual objects, background

scenery and actions.

- Object-VLAD

Due to the employment of max-pooling and softmax layer in DCNN structure, concept detectors

tend to overlook activations of small size objects, emphasize those of primary objects and produce

a very sparse semantical vector. To equally accumulate responses of multiple objects within a

frame, we propose a finer granularity object-level representation named Object-VLAD for videos.

Specifically, for each video, we separately encode frame-level features and object-level features with

VLAD. For the prior, we directly adopt CNN-VLAD [19], which encodes frame-level features with

VLAD, whereas for the latter, we utilize selective search [20] for proposing candidate objects,

describe objects with deep features and encode them with VLAD. We adopt neural responses from

Res5A layer of the RestNet-50 architecture (trained on ImageNet 1000 categories) [9] as feature

descriptors for each frame and regional object.



1.1.2 Textual

Tesseract OCR [21] is used to extract text from video frames. The engine is applied in a brute-force

manner with post processing on the resulting extracted texts. From a video segment, every key video

frame (roughly one per second) is decoded using the FFmpeg open-source library. All key frames are

then fed to the Tesseract engine for OCR. The resulting texts are analyzed to check whether meaningful

text is extracted from the video frame. This post-processing checks the words in the extracted text per

frame using the following rules:

• every word has at least 3 characters,

• every word should have at least one vowel,

• every word should match with US-English dictionary (using Python Enchant spell-checking library).

Words that abide to all conditions are kept.

The results from Tesseract per video are fed into Lucene to index and search in the text. A manually

defined Boolean query based on the event description and Wikipedia is used in combination with the

term frequency to retrieve the positive videos.

1.2 System per Subtask

In this section, we will elaborate the system and submitted runs for each subtask.

1.2.1 Zero Example

For the 20 pre-specified events, three runs are submitted for 0-Ex subtask:

- VIREO MED16 MED16EvalFull PS 0Ex MED p-VisualTextualRernk 4: Zero-example system with

manually refined semantic query, highlighted concept reranking and late fusion with OCR (Best

0Ex performance).

- VIREO MED16 MED16EvalFull PS 0Ex MED c-VisualRernk 4: The system of primary run, but

with visual features only.

- VIREO MED16 MED16EvalFull PS 0Ex MED c-VisualTextualNorernk 4: The system of primary

run, but without highlighted concept reranking.

Our zero-example system aims to pick up and score the query-relevant concepts given a concept bank.

This year we basically follow the successful zero-example pipeline last year [22]. Minor changes are made

to refine the system. First, the deep features are mostly replaced by deep residual network’s output.

Second, a new ImageNet-13K dataset [8] is used to replace ImageNet-17K used in the last year. Last but

not least, we implement a new user interaction highlighted concept reranking also for 0Ex in MED. This

technique render a user a way to emphasize a group of concepts that share a specific characteristic worth

to be strengthened. The idea is borrowed from our implementation for AVS task. Other components

in the pipeline, such as automatic semantic query generation, manual concept screening, and OCR late

fusion, are all kept the same as in [22].

1.2.2 Ten Example

We submitted 4 runs for the PS-10Ex subtask and 2 runs for the AH-10Ex subtask:

- VIREO MED16 MED16EvalFull PS 10Ex MED p-Fus 4: 10-example system based on Concept-

Bank feature fused with the Object-VLAD representation of video.

- VIREO MED16 MED16EvalFull PS 10Ex MED c-CNNVLAD 4: 10-example system based on the

CNN-VLAD representation of video [19].



- VIREO MED16 MED16EvalFull PS 10Ex MED c-ConceptBank 4: 10-example system based on

Concept-Bank feature.

- VIREO MED16 MED16EvalFull PS 10Ex MED c-ObjectVLAD 4: 10-example system based on

the Object-VLAD representation of video.

Visual Classifiers: The Concept-Bank features, i.e., ImageNet 1000, SIN 346, RC 497, Places 205,

FCVID 239, Sports 487 and ImageNet-Shuffle 12988 are first concatenated to one feature vector and

then used to train an event classifier using the Chi-Square SVM. For the event classifiers based on the

Object-VLAD representation, we train the classifier with linear SVM.

Fusion (Concept-Bank + Object-VLAD): For 10Ex system, average fusion is used to directly com-

bine scores of Concept-Bank based SVM and Object-VLAD SVM. We name the fusion system as Visual-

System.

1.2.3 Hundred Example

In the PS-100Ex subtask we submit 3 runs:

- VIREO MED16 MED16EvalFull PS 100Ex MED p-ObjectVLAD 4: 100-example system based on

the Object-VLAD representation of video.

- VIREO MED16 MED16EvalFull PS 100Ex MED c-CNNVLAD 4: 100-example system based on

the CNN-VLAD representation of video [19].

- VIREO MED16 MED16EvalFull PS 100Ex MED c-ConceptBank 4: 100-example system based on

Concept-Bank feature.

The training methods with the concept bank feature and the Object-VLAD representation are the

same as explained in the previous section (section 1.2.2).

1.3 MED Results and Analysis

In this section we will explain the results per subtask.

1.3.1 Zero Example

Table 1: Zero-example performance comparison on MED16EvalFull reported by NIST.

Method MInfAP200%

Primary run 21.3

Primary run without OCR late fusion 19.3

Primary run without highlighted concept reranking 19.4

Table 2: InfAP200% comparison with and without highlighted concept reranking (HCR).

Event name Without HCR With HCR

Dog show 59.7 81.3

Rock climbing 48.1 49.1

Beekeeping 64.4 71.8

Fixing musical instrument 7.2 14.9

Horse riding competition 23.2 20.5

Parking a vehicle 1.1 3.2

Playing fetch 5.3 6.5



Table 1 lists the comparative runs we submitted for evaluation. As we see from the table, late fusion

with OCR used in previous years has equal importance with highlighted concept reranking introduced

in this year. It is worth noting that, due to the preference of a human evaluator, highlighted concept

reranking is not applicable for all the 20 events. Table 2 shows the 7 events having highlighted concepts

assigned by a human evaluator. Most events show a promising improvement by this technique. The

event “horse riding competition” is an exception. The overall MInfAP is improved by 2% by these mere

7 events applied highlighted concept reranking.

1.3.2 Ten/Hundred Examples

Table 3: MED PS-10/100Ex: Performances of concept feature on MED14-Test (Mean AP%)

Feature PS-10Ex PS-100Ex

mAP% mAP%

Concept-Bank (2015) 21.7 31.1

Concept-Bank N1 (2016)

exclude ImageNet-Shuffle 23.9 33.9

Concept-Bank N2 (2016)

include ImageNet-Shuffle 25.5 36.0

In this section, we first discuss performances of the new concept bank, followed by analyzing performances

of object-level video representation. Finally, we introduce performance of visual system which fuses results

of different features.

Improvement by the New Concept Bank: Table 3 compares performance of Concept-Bank used in

our MED-2015 system with those of new Concept-Banks implemented this year. Specifically, Concpet-

Bank (2015) [23] and Concept-Bank N1 (2016) are trained with the same training data but by different

types of classifiers, i.e., the prior adopts the AlexNet structure and the latter adopts the RestNet-50

architecture. Compared with Concept-Bank (2015), we can easily observe that Concept-Bank N1 boosts

mAP of MED from 21.7 to 23.9 by a relative improvement of 10.1% under PS-10Ex condition and from

31.1 to 33.9 by a relative improvement of 9.0% under PS-100Ex condition on MED14-Test dataset.

Additionally, by combining Concept-Bank N1 with ImageNet-Shuffle 12988, we create Concept-Bank N2

with a large vocabulary. With more concepts involved, mAP is further boosted from 23.9 to 25.5 under

PS-10Ex condition and from 33.9 to 36.0 under PS-100Ex condition.

In sum, we conclude that:

• Video representation relies on the architecture of concept classifiers, i.e., the more accurate, the

better.

• Multimedia event detection depends on the vocabulary size of concept bank, i.e., the larger, the

better.

Table 4: MED PS-10Ex: Improvements by encoding regional objects on MED14-Test and MED16-

EvalSub/Full datasets.

PS-10Ex MED14-Test MED16-EvalSub MED16-EvalFull

System mAP% MinfAP200% MinfAP200%

CNN-VLAD 25.3 33.0 33.8

Object-VLAD 27.2 35.0 35.6



Table 5: MED PS-100Ex: Improvements by encoding regional objects on MED14-Test and MED16-

EvalSub/Full datasets.

PS-100Ex MED14-Test MED16-EvalSub MED16-EvalFull

System mAP% MinfAP200% MinfAP200%

CNN-VLAD 38.6 42.9 34.4

Object-VLAD 40.0 45.0 36.1

Imporvement by Object-VLAD: We compare Object-VLAD with a strong baseline named CNN-

VLAD [19]. Both methods adopt neural responses from Res5A layer of the ResNet-50 architecture as

feature descriptor for image/object. Except for selective search [20] which is launched for candidate

objects proposal, Object-VLAD shares the same operations, such as spatial pyramid pooling (SPP) [24],

VLAD encoding and etc, with CNN-VLAD. As shown in Table 4 and Table 5, we observe that:

• By adding the phase of regional objects encoding, Object-VLAD consistently outperforms CNN-

VLAD under PS-10Ex and PS-100Ex conditions on MED14-Test and MED16-EvalSub/EvalFull

datasets.

• For PS-10Ex, Object-VLAD boosts performance of CNN-VLAD by a relative improvement of 6.3%

on average with different testing datasets; whereas, for PS-100Ex, the relative improvement is

only 4.3%, indicating that Object-VLAD brings larger improvement especially where there are less

training positives.

Table 6: MED PS-10Ex: Performances of single/multiple features on MED14-Test and MED16-

EvalSub/Full datasets

PS-10Ex MED14-Test MED16-EvalSub MED16-EvalFull

System mAP% MinfAP200% MinfAP200%

Concept-Bank N2 25.5 32.7 29.4

Object-VLAD 27.2 35.0 35.6

Visual-System

( Concept-Bank + Object-VLAD ) 29.2 37.7 38.9

Improvement by Fusion: For our MED-2016 system with very few positive examples, we mainly

explore capacities of deep feature-based representations (i.e., Concept-Bank N2, Object-VLAD) without

considering OCR/ASR as last year. We use average strategy to fuse results of Concept-Bank N2 and

Object-VLAD under PS-10Ex conditions and have the following observations:

• Even though Res5A feature descriptor is trained with only 1,000 ImageNet categories, with the

Object-VLAD representation, we still obtain much higher performances (i.e., mAP: 25.5 vs 27.2 on

MED14-Test, MinfAP200: 32.7 vs 35.0 on MED16-EvalSub, MinfAP200: 29.4 vs 35.6 on MED16-

EvalFull) than those of a much larger scale Concept-Bank, which indicates that regional objects

are also essential factors for video representations.

• Object-VLAD is a complement to Concept-Bank N2, and average fusion of the two models brings

a large improvement to overall performances (i.e., mAP: 25.5 vs 29.2 on MED14-Test, MinfAP200:

32.7 vs 37.7 on MED16-EvalSub, MinfAP200: 29.4 vs 38.9 on MED16-EvalFull).

We also compared our primary runs with other teams in TRECVID 2016 benchmark and summarized

them as below:



For PS-10Ex, our primary run (Visual-System) achieves MinfAP200 of 37.7 on MED16-EvalSub

dataset ranking 2nd among 11 teams), and MinfAP200 of 38.9 on MED16-EvalFull dataset ranking

2nd among 4 teams.

For AH-10Ex, our primary run (Visual-System) ranks 1st (MinfAP200: 42.4) on MED16-EvalSub

dataset and 2nd (MinfAP200: 45.7) on MED16-EvalFull dataset among 4 teams.

For PS-100Ex, with single feature, our primary run (Object-VLAD) achieves MinfAP200 of 45.0 on

MED16-EvalSub dataset ranking 5th among 9 teams and MinfAP200 of 36.1 on MED16-EvalFull dataset,

ranking 2nd among 4 teams.

1.4 Conclusion and Discussion

Based on the results attained on TRECVID Multimedia Event Detection task of 2016, we can conclude

that our large-scale Concept-Bank and Object-level video representation bring a larger improvement

compared to our visual systems in 2015 [23] and achieve the state-of-the-art performances. Particularly,

for MED with positive examples, increasing the vocabulary size of Concept-Bank and fine-tuning concept

classifiers with the ResNet-50 architecture are proved to be beneficial. Additionally, the strategies of

accumulating object-level features (e.g., Object-VLAD) surprisingly complements to Concept-Bank based

model, which inspires us that collection of regional object information is worth of paying attention.

2 Ad-Hoc Video Search (AVS)

2.1 System

The implementation of ad-hoc video search is mainly based on our zero-example MED framework [22].

Specifically, the most important change is that we add a component called highlighted concept reranking

in the step when a human evaluator is involved to screen the automatically proposed concept candidates.

Other minor refinements include (1) replacing the AlexNet features by deep residual network’s features,

(2) the use of a more refined ImageNet-13K concepts [8] instead of ImageNet-17K concepts, and (3) a

simplified term weighting mechanism to process the query sentence.

For highlighted concept reranking, the idea is inspired by a scenario in the AVS queries. For instance,

“one or more people sitting outdoors” and “a street scene at night.” In these query cases, a user may

want to emphasize characteristics such as “outdoors” and “at night” to tighten the search results. In

addition to concept screening, we hereby allow a user to highlight a group of concepts sharing a certain

characteristic and boost the top videos containing these concepts. This is a reranking technique in which

only the ranking of the top videos are refined. The videos on the top which contain the highlighted

concepts are given high weights and their ranking are largely boosted. As this reranking technique is

only confined in the top videos of the first search result, the videos containing the highlighted concepts

but unrelated to the query can be largely excluded.

2.2 AVS Results

Table 7: MInfAP performance for different concept settings in Video Search 2008 dataset.

Concept Bank All concepts SIN 346 concepts Multi-modality fusion in 2008 [25] Random

MInfAP 0.122 0.100 0.046 0.009

By adapting our zero-example MED system to AVS, we test the objective performance for automatic

runs using the dataset for Video Search task in 2008. The dataset contains 48 queries with ground truth

available for testing. As shown in table 7, we see the performance using only SIN 346 concepts nowadays

is more than doubled compared to the best results in 2009 [25]. With all the available concept detectors,



the performance improves further by 2%. However, for the everyday topics in AVS 2016 queries, SIN 346

concepts are much less prominent due to their limited coverage. The large gap is shown in table 8.

Table 8: Performance difference between using all the concept detectors and only SIN 346 detectors in

AVS 2016 evaluation.

Concept Bank All concepts SIN 346 concepts

MInfAP 0.044 0.014

On the other hand, we would like to analyze how much improvement is brought about by highlighted

concept reranking. Table 9 shows all the queries having highlighted concepts specified by a human

evaluator. As we see from this result, the improvement is less prominent compared to the same technique

applied in 0Ex MED. Moreover, as there are only 5 events in total adopting this technique, the overall

performance of 30 queries stay relatively the same in around 0.044.

Table 9: Performance with and without highlighted concept reranking (HCR).

Topic ID Query With HCR Without HCR

501 a person playing guitar outdoors 0.106 0.049

502 a man indoors looking at camera where a bookcase is behind him 0.078 0.072

503 a person playing drums indoors 0.069 0.076

517 a policeman where a police car is visible 0.027 0.015

520 any type of fountains outdoors 0.141 0.188

2.3 Interactive Video Search

We also extend the system for interactive search [26]. The system is showcased in Video Browser

Showdown (VBS) of MMM 2017 [27] achieves the top performance in the subtask of ad-hoc video search.

3 Video-to-Text Description (VTT)

3.1 System Overview

The task is challenging since it requires detailed understanding of the video content, natural language

sentences as well as inter-modality correspondence. A straightforward way is by training explicit concepts

detectors (such as objects, actions and scenes) to find the key concepts in a video and matching the

concepts to the keywords in text description based on word ontologies, such as WordNet. The main

drawback of this method lies in the concept detector training. First, the number of concepts are limited

due to the lack of training data. Second, the performance of concept detectors are not guaranteed and the

error will be accumulated when matching sentence. To tackle these problems, we adopt stacked attention

network (SAN) [4] to directly learn the inter-modality correspondence without explicit concept detectors.

Specifically, the SAN model is designed to filter the noisy regions in a frame and only keep the salient

regions for inter-modality matching to improve the accuracy.

3.1.1 Concept-based Text Description Matching

We adapt our successful zero-example MED system [22] in a reversed pipeline for concept-based

video-to-text retrieval. As we do in the zero-example MED system, we prepared a concept bank of

more than 2,000 pre-trained concept detectors. The concepts were collected from the four off-the-shelf

datasets [22]. The concept features of a query video were extracted by max pooling over all the detector

responses of the keyframes. On the other hand, all the available sentences were input to the system to



generate the concept-based sentence representations. This generation process is analogous to the semantic

query generation in our zero-example MED system. The difference is in the use of WordNet ontology.

Previously in a zero-example MED system, we only use WordNet to find synonyms for a matched synset

in the query. But in video-to-text task, by extending the noun synsets in the query to their hyponyms of

is-a relationship, it helps to improve the performance. Finally, the internal ranking process regards the

concept features of the query video as a semantic query, then performs ranking for all the sentences by

comparing the concept-based sentence representations to the semantic query.

3.1.2 Stacked Attention Model
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Figure 1: Framework of stacked attention network.

Figure 1 illustrates the SAN model, with visual and text features respectively extracted from videos and

text description as input. The model learns a joint space that boosts the similarity between videos and

their corresponding text descriptions. Different from [4], where the output layer is for classification, we

modify SAN so as to maximize the similarity for video-text pairs.

Image Embedding Feature: We have two kinds of input visual features, which are the last pooling

layer of VGG and C3D that retains the spatial information of the frames in a video. For each video, four

frames are uniformly selected based on the video duration and the video is represented by average pooling

over the frame features or concatenating into one spatial vector. Denote fI as the input visual feature

and is composed of regions fi. Each region fi is transformed to a new vector or embedding feature as

following:

vI = tanh(WIfI + bI) (1)

where vI ∈ Rd×m is the transformed feature matrix, with d as the dimension of new vector and m is the

number of grids or regions. The embedding feature of fi is indexed with i-th column of vI , denoted as vi.

The transformation is performed region-wise, WI is the transformation matrix and bI is the bias term.

Text Description Embedding Feature: We explore to use a CNN similar to [3] for text representa-

tion. First, each word is embedded by word vector xt, provided by [28] and get the sentence vector by

concatenating the word vectors:

x1:T = [x1,x2, . . . ,xT ] (2)

Then we apply convolution operation on the word embedding vectors. We use three convolution filters,

which have the size of three, four and five respectively and the output dimension for these three filters



are all set to 256. The t-th convolution output using window size c is given by:

hc,t = tanh(Wcxt:t+c−1 + bc) (3)

The filter is applied only to window t : t+ c− 1 of size c. Wc is the convolution weight and bc is the bias.

The feature map of the filter with convlution size c is given by:

hc = [hc,1,hc,2, . . . ,hc,T−c+1] (4)

Then we apply max-pooling over the feature maps of the convolution size c and denote it as

h̃c = maxt[hc,1,hc,2, . . . ,hc,T−c+1] (5)

The max-pooling over these vectors is a coordinate-wise max operation. For convolution feature maps

of different sizes c = 3, 4, 5, we concatenate them to form the feature representation vector of the whole

question sentences:

h = [h̃3, h̃4, h̃5] (6)

hence vT = h is the CNN based text description vector.

Joint Embedding Feature: The attention layer is to learn the joint feature by trying to locate the

salient visual regions that correspond to the text descriptions. There are two transformation matrices,

WI,A ∈ Rk×d for video I and WT,A for text description T, mimicking the attention localization, formulated

as following:

hA = tanh(WI,AvI ⊕ (WR,AvT + bA)) (7)

pI = softmax(WPhA + bP ) (8)

where hA ∈ Rk×m, pI ∈ Rm, WP ∈ R1×k. Note that pI aims to capture the attention, or more precisely

relevance, of frame regions to text description. The significance of a region fi is indicated by the value

in the corresponding element pi ∈ pI .

The joint visual-text feature is basically generated by adding the embedding features vI and vT . To

incorporate attention value, regions vi are linearly weighted and summed before the addition operation

with vT , as following:

ṽI =

m∑
i=1

pivi (9)

u = ṽI + vT (10)

where ṽI ∈ Rd, and u ∈ Rd represents the joint embedding feature.

As suggested in [4], progressive learning by stacking multiple attention layers can boost the perfor-

mance, but will heavily increase the training cost. We consider two layer SAN, by feeding the output of

first attention layer, u(1), into the second layer to generate new joint embedding feature u(2) as following:

h
(2)
A = tanh(W

(2)
I,AvI ⊕ (W

(2)
R,Au + b

(2)
A )) (11)

p
(2)
I = softmax(W

(2)
P h

(2)
A + b

(2)
P ) (12)

ṽ
(2)
I =

∑
i

p
(2)
i vi (13)

u(2) = ṽ
(2)
I + u(1) (14)

Objective Function: To this end, the similarity between video and text description is generated as

following:

S < vI ,vT >= tanh(Wu,su
(2) + bs) (15)



where Wu,s ∈ Rd and bs ∈ R is bias. S < vI ,vT > outputs a score indicating the association between

the embedding features of video and text description. The learning is based on the following rank-based

loss function with a large margin form as the objective function:

L(W,Dtrn) =
∑

(vI ,v
+
T
,v−

T
)∈Dtrn

max(0, δ + S < vI ,v
−
T > −S < vI ,v

+
T >) (16)

The training set, Dtrn, consists of triples in the form of (vI ,v
+
T ,v

−
T ), where v+

R(v−
R) is true (false) text

description for video vI . The matrix W represents the network parameters, and δ ∈ (0, 1) controls the

margin in training and is cross-validated.

3.2 Experiments

3.2.1 Settings and Datasets

Here we detail the parameter setting of SAN. The dimension of attention layer hA is set as 1,024 and

the hyper parameter δ is set as 0.35 through cross-validation. SAN is trained using stochastic gradient

descent with momentum set as 0.9 and the initial learning rate as 1. The size of mini-batch is 50 and the

training stops after 30 epochs. To prevent overfitting, dropout [29] is used. Since the provided training

dataset by TRECVID is too small, we also train our model on Flickr30k [30], Coco [31] and TGIF [32]

datasets. Here, we aggregate the sentences from these three datasets and the size of vocabulary is 12,270.

3.2.2 Result Analysis
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Figure 2: Mean inverted rank of SAN and concept-based ranking methods.

The testing dataset is composed of 1,915 videos and two sets (a and b) of text descriptions (each composed

of 1,915 sentences). In addition to the submitted four runs, we also calculate the performance of other

four runs, which only make use of the VGG feature by average pooling (Vireo-Average-VGG) over frames

or concatenating frame features (Vireo-Flat-VGG). Similarly, two runs (Vireo-Average-C3D and Vireo-

Flat-VGG) are evaluated on C3D features. Here, the mean inverted rank is adopted for evaluation. Table

2 presents the results of our eight runs. From the table, we can see that the C3D features consistently

achieve better performance than VGG features in both average pooling and frame feature concatenation.

It indicates that motion (C3D) features is much more important than static (VGG) features in video

content understanding, which is due to the fact that there are many verbs in the text description, such

as “dancing outdoor” or “itching herself indoor” etc. Another observation is that concatenating frame

features achieves better performance than simple average pooling. This is also reasonable since the

concatenation not only keep the salient information in different frames but also preserves the sequential

information between different frames, which is very important when only using static (VGG) features, as



indicated by the performance of Vireo-Average-VGG and Vireo-Flat-VGG. However, we also find that

the shallow fusion between static (VGG) and motion (C3D) features may even harm the performance,

which is attributed to the weak action recognition ability of static (VGG) features. Finally, it is also easy

to observe that SAN models consistently perform better than concept-based methods, which means that

SAN model gracefully solves the problems in concept-based methods as mentioned in Section 3.1.

3.3 Summary

We have tested the traditional concept-based approach and the attention-based deep models for VTT

matching task. Deep models perform much better than concept-based matching. We also observe that

motion (C3D) features dominate the performance and the feature concatenation also performs better

than simple average pooling, which indicates that the temporal context information is important for video

content understanding. In the future, we are targeting at making use of temporal context information

to select more representative frames for video representation. In addition, we will also consider auditory

modalities for matching.
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