
WARD@TRECVID 2016
Surveillance Event Detection

Xingzhong Du1, Yi Yang2, Xiaofang Zhou1
1The University of Queensland, 2University of Technology Sydney

I. ABSTRACT

In this year’s competition [1], we made three changes
based on last year’s system [2]. The first change was using
original videos instead of resized videos. The second change
was training the code books under separated cameras. The
final change was performing inner vector normalization after
feature encoding. In the cross validation, some of the proposed
changes had impact on the detection and together made the
fusion more accurate. However, in the competition, this year’s
submission was inferior to the last year’s submission. We
investigated the submission and found that it was caused
by using the original videos, which was proposed for the
intention of increasing the motion saliency in the features. As
a consequence, we will not use the original videos to extract
features for the next round.

II. THIS YEAR’S RETROSPECTIVE SYSTEM

The whole pipeline is same as last year but with three
changes. In this section, we will explain why we made these
changes for this year’s submission, and display how these
changes influenced the detection accuracy. For convenience,
all the results reported in this part are measured by the actual
detection cost rate (aDCR) 1.

A. Video Preprocessing

TABLE I. DETECTION UNDER RESIZED AND ORIGINAL VIDEOS

resize origin
event dtwfv idtwfv dtwfv idtwfv
CellToEar 1.0009 1.0018 1.0026 1.0022
Embrace 1.0050 1.0131 0.9197 0.9774
ObjectPut 1.0057 1.0059 1.0154 1.0218
PeopleMeet 0.9589 0.9516 0.9634 0.9710
PeopleSplitUp 0.9610 0.9595 0.9798 0.9752
PersonRuns 0.6634 0.6458 0.6193 0.6119
Pointing 0.9890 0.9956 0.9887 0.9908

The video preprocessing prepares the input for the feature
extraction. In particular, each clip’s length is 60 frames and 30-
frame overlapped with the adjacent clips. It is worth noting that
[3], [4] track the feature points for 15 frames by default. The-
refore, for each video clip, we append 15 subsequent frames
behind the original 60 frames. After the sliding, roughly 350k
clips are generated. The clips whose size are 0 are removed at
the end of video preprocessing. In the last year’s system, all
the video clips are resized to 320× 240. This accelerates the
feature extraction. However, the motion saliency is weaken by
the resizing. This year, we use the original videos to increase

1For more details about how to calculate aDCR, please refer to
tftp://jaguar.ncsl.nist.gov/pub/SED16/TRECVid-SED16-EvaluationPlan.pdf

the saliency in the extracted features. The results from the
cross validation shows that features extracted from the original
videos are significantly beneficial to the detection of Embrace
and PersonRun.

B. Code Book Learning

TABLE II. DETECTIONS UNDER DIFFERENT CODE BOOKS

all cameras separated cameras
event dtwfv idtwfv dtwfv idtwfv
CellToEar 1.0009 1.0018 1.0028 1.0016
Embrace 1.0050 1.0131 1.0052 1.0122
ObjectPut 1.0057 1.0059 1.0065 1.0070
PeopleMeet 0.9589 0.9516 0.9653 0.9586
PeopleSplitUp 0.9610 0.9595 0.9528 0.9465
PersonRuns 0.6634 0.6458 0.6665 0.6423
Pointing 0.9890 0.9956 0.9851 0.9901

We use fisher vector [5] to encode the raw features. During
the encoding process, one important component is the code
book. In last year’s system, the code book was learned on the
sampled feature points from the random video clips under all
the cameras. Considering that the angles of the cameras are
different, we change the input of the code book learning. In
particular, we learn a code book for each camera. That is to
say, given N cameras and K features, now we choose to learn
N × K code books for fisher encoding instead of previous
N code books. We expect such separated code books capture
more camera-specific information to improve the detection. To
investigate the impact, we use resized videos with all-camera
code book as the baseline and compare the results from the
those from resized videos with separated-cameras codebooks.
The results reported in Table II show that this change did not
have significant impact on the detection accuracy.

C. Feature Encoding

This year, we still extract dense trajectory [3] and improve
dense trajectory [4] to perform detection. This method consists
of four steps. The first step learns a projection matrix based the
raw features by whiten Principle Components Analysis (whiten
PCA). After dimension reduction, the dimension of the raw
features are reduced by a factor of two. The second step learns
a code book which is Gaussian Mixture Model (GMM) based
on the reduced features. The components in GMM act as the
visual words for inferring the soft assignment information, and
the amount of the components is set to 256. The third step
transforms the reduced features of a clip into fisher vectors
by the soft assignment information, and averages them into
one fisher vector for this clip. The last but not the least step
is the normalization. Existing normalization process includes
power and l2 normalization [5]. In this year’s submission, we
apply a further inner normalization. This applies 5 separated



normalization processes on the whole fisher vectors. This
is the because the raw feature have 5 components, namely,
trajectory, HOG, HOF, MBHx and MBHy. We want to make
the discriminative powers from different features be equal in
the learning. The results are reported in Table III. It indicates
that this change had impact on Embrace, PeopleMeet and
PersonRun.

TABLE III. DETECTIONS UNDER DIFFERENT NORMALIZATIONS

power + l2 inner power + inner l2
event dtwfv idtwfv dtwfv idtwfv
CellToEar 1.0009 1.0018 1.0002 1.0028
Embrace 1.0050 1.0131 0.9614 0.9829
ObjectPut 1.0057 1.0059 1.0128 1.0092
PeopleMeet 0.9589 0.9516 0.9470 0.9649
PeopleSplitUp 0.9610 0.9595 0.9723 0.9694
PersonRuns 0.6634 0.6458 0.6339 0.6434
Pointing 0.9890 0.9956 0.9906 0.9864

D. Submission Generation

The generation of submission starts with model training
where detector are created for each event under Camera 1, 2,
3, 5 on different feature settings. The training consists of three
steps. In the first step, we treat the clips which have 50% over-
lap with the ground truth as the positive, then use LIBLINEAR
[6] to train detectors and two-fold cross-validation to choose
parameters. But in LIBLINEAR, we need to implement the
probability function by ourselves. In this year’s submission,
the probability function is implemented as [7], which is more
robust than the curve fitting. The python code can be downlo-
aded from https://github.com/domainxz/pytools.git. We verify
this code by reproducing the action recognition experiment in
[4]. The results show this code can work properly. The third
step of model training learns a threshold for each detector,
then applies Non-Maximum Suppression (NMS) to merge the
adjacent positive clips. When the model training is finished,
We will have 7 × 4 detectors per feature. Each of them only
focuses on one event under one camera. Considering the three
changes we made this year. There are 8 detection results for
each event under each camera.

The final submission is a combination of the selected
detection results. This year, we selected the detections on the
original videos with different codebooks and normalization
methods. Table IV reports the fusion results from our valida-
tion experiment and final competition. In a word, even though
the proposed method improved the detection in the validation,
but it failed to improve in the competition.

TABLE IV. FUSION UNDER LAST YEAR’S AND THIS YEAR’S SETTINGS

validation submission
event 2015 2016 2015 2016
CellToEar 1.0013 1.0008 1.0046 1.0140
Embrace 0.9251 0.8409 0.8680 0.8646
ObjectPut 1.0034 1.0133 1.0160 1.0044
PeopleMeet 0.9172 0.9200 0.8939 0.9269
PeopleSplitUp 0.8821 0.8712 0.8934 0.8909
PersonRuns 0.6426 0.5325 0.5768 1.0303
Pointing 0.9869 0.9826 1.0140 1.0057

III. RESULT ANALYSIS

It is the first time we saw such a big performance diver-
gence between validation and final test. So we looked inside

the aDCR and expected to get some clues. We extracted the
amount of ground true, true positive and false positive from
the returned results and reported them in Table V. Because the
test data is an increment to last year’s, the comparison shows
that this year’s submission made too much false positives than
last year while decreased considerable true positives. We think
this is because we extract features on the original videos.
The motion saliency indeed increases but does not make the
detection improve. Next time, we will roll back to use the
resized videos.

TABLE V. GROUND TRUE (GT), TRUE POSITIVE (TP) AND FALSE
POSITIVE (FP) COMPARISON

2015 2016
event GT TP FP GT TP FP

CellToEar 54 0 8 77 0 28
Embrace 138 62 552 173 42 215
ObjectPut 289 7 70 348 3 26

PeopleMeet 256 100 495 323 92 424
PeopleSplitUp 152 57 467 176 41 248
PersonRuns 50 28 238 63 27 1237

Pointing 794 35 101 929 30 76

IV. ACKNOWLEDGMENT

This work was supported by the ARC project (Grant No.
DP150103008).

REFERENCES

[1] G. Awad, J. Fiscus, M. Michel, D. Joy, W. Kraaij, A. F. Smeaton,
G. Qunot, M. Eskevich, R. Aly, G. J. F. Jones, R. Ordelman, B. Huet,
and M. Larson, “Trecvid 2016: Evaluating video search, video event
detection, localization, and hyperlinking,” in Proceedings of TRECVID
2016. NIST, USA, 2016.

[2] X. Du, X. Li, X. Zhou, and A. Hauptmann, “Ward-cmu @ trecvid 2015,”
in Proceedings of TRECVID 2015, 2015.

[3] H. Wang, A. Kläser, C. Schmid, and C. Liu, “Action recognition by dense
trajectories,” in CVPR, 2011, pp. 3169–3176.

[4] H. Wang and C. Schmid, “Action recognition with improved trajectories,”
in ICCV, 2013, pp. 3551–3558.

[5] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” in ECCV, 2010, pp. 143–156.

[6] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, “LIBLINEAR: A
library for large linear classification,” JMLR, vol. 9, pp. 1871–1874, 2008.

[7] J. C. Platt, “Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods,” in ADVANCES IN LARGE
MARGIN CLASSIFIERS. MIT Press, 1999, pp. 61–74.


