Kobe University, NICT, and University of Siegen at TRECVID 2016 AVS Task

Yasuyuki Matsumoto, Kuniaki Uehara (Kobe University)
Takashi Shinozaki (NICT)
Kimiaki Shirahama, Marcin Grzegozek (University of Siegen)
Our Contribution

A method of using small-scale neural network to greatly accelerate concept classifier training.

Transfer learning can be used to acquire temporal characteristics efficiently by combining both small networks and LSTM.

Evaluate the effectiveness of using **balanced examples** at the time of training.
The Problem

Using pre-trained neural networks to extract features is a very popular approach.

However, training of classifiers takes long time.

This training gets even worse if classifiers required are many.
Micro Neural Networks

Binary classifier that outputs two values to predict the presence or absence of the concept.

A micro Neural Network is a fully-connected neural network with a single hidden layer.

Dropout is used to avoid overfitting.

Calculation time could be reduced (hours->minutes).
Our Approach - Overview

Overview of our method for TRECVID 2016 AVS task

Query → Concept → Model → Precision

- Manual selection
- Feature extraction
- MicroNN training
- LSTM
- Shot retrieval
Our Approach - Overview

How we extracted concepts from the queries

+ Manual selection

Query ➔ Concept ➔ Model ➔ Precision

+ Feature extraction
+ MicroNN training
+ LSTM
+ Shot retrieval
Our Approach - Manual Selection

Begin with manually selecting relevant concepts for each query

Simple rule is used to make it easier to automate the concept selection in the future.

Query (502)

“Find shots of a man indoors looking at camera where a bookcase is behind him”

- “man”
- Pick only noun and verb
- “look”
- **Base form**
- “bookcase”,
- “bookshelf”,
- “furniture”
- **Synonyms** (from ImageNet)
Our Approach - Manual Selection

Begin with manually selecting relevant concepts for each query

Simple rule is used to make it easier to automate the concept selection in the future.

Query (502)
"Find shots of a man indoors looking at camera where a bookcase is behind him"

Pick only noun and verb

"man"
"look"

Base form

Synonyms
(from ImageNet)

"bookcase",
"bookshelf",
"furniture"

Concept

Indoor Speaking_to_camera Bookshelf Furniture
Our Approach - Overview

Overview of our method for TRECVID 2016 AVS task

Query ➔ Concept ➔ Model ➔ Precision

+ Manual selection ➔ + Feature extraction ➔ + Shot retrieval
+ MicroNN training ➔ + LSTM
Our Approach - Overview

Combine the concepts from each query.

- Feature extraction
- MicroNN training
- LSTM
- Shot retrieval
Our Approach - Feature Extraction

Pre-trained network is usually transferred into classifiers suitable for the target problem

Use pre-trained VGGNet

- ILSVRC 2014
- CNN with very deep architecture
- The 16 layer version is used
- FC7: Use output at the second fully connected layer

Our Approach - MicroNN Training

Perform gradual transfer learning for each concept in the following step

① Start with training microNN using images
Previous Approach - SVM Training

Until now . . .

Previous studies have trained classifiers such as SVM by extracted features. This requires a lot of time.
Our Approach - MicroNN Training

Perform gradual transfer learning for each concept in the following step

① Start with training microNN using images
Our Approach - MicroNN Training

Perform gradual transfer learning for each concept in the following step

① Start with training microNN using images
Our Approach - MicroNN Training

Perform gradual transfer learning for each concept in the following step

② Refine the microNN using shots in video dataset.
Perform gradual transfer learning for each concept in the following step

② Refine the microNN using shots in video dataset. The microNN has weight parameters learned at first step as its initial value.
Perform gradual transfer learning for each concept in the following step.

Further, hidden layer of microNN is replaced with LSTM for acquiring temporal characteristics. Refine the microNN starting with weight parameters learned at the second step as initial values.
Our Approach - Overview

Overview of our method for TRECVID 2016 AVS task

Query → Concept → Model → Precision

+ Feature extraction + MicroNN training + LSTM

+ Manual selection

+ Shot retrieval
Our Approach - Overview

How we go from a shot’s concept relevance to its search score

Query → Concept → Model → Precision

+ Manual selection → + Feature extraction → + MicroNN training → + LSTM

+ Shot retrieval
Our Approach - Shot Retrieval

For each shot, calculate the average of output values of microNNs for the selected concepts in a query.

MicroNN outputs are normalized to [-1, 1], to balance between different concepts.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Indoor</th>
<th>Speaking_to_camera</th>
<th>Bookshelf</th>
<th>Funiture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output values</td>
<td>0.7</td>
<td>0.1</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Our Approach - Shot Retrieval

How do we compare that with other shots

Calculate the average of output values and use it as overall search score.

Concept

Indoor Speaking_to_camera Bookshelf Furniture

Output values

\[
\begin{align*}
0.7 & \quad 0.1 & \quad 0.4 & \quad 0.6 \\
\end{align*}
\]

Average of output values (Search Score)

0.45
Purpose of Experiment

1. Evaluate the learning speed.
2. Evaluate the effectiveness of using LSTM to acquire temporal characteristics.
3. Evaluate whether using same number of positive and negative examples ("Balanced") for training improves classification.
Experiment - Three Runs
Submitted the following for TRECVID 2016 AVS task

kobe_nict_siegen_D_M_1
Imbalanced

Fine-tuning is carried out using imbalanced numbers of positive and negative examples. (30,000 total)

positive
Dataset Ratio
negative

kobe_nict_siegen_D_M_2
Balanced

Fine-tuning is carried out using balanced numbers of positive and negative examples. (30,000 total)

positive
Dataset Ratio
negative

kobe_nict_siegen_D_M_3
(Imbalanced) LSTM

Unlike max-pooling, LSTM obtains temporal characteristics. LSTM-based microNNs are trained only for 14 concepts for which temporal relations among video frames are important

Only 14 concepts
Experiment - Dataset

Used in this study

- **ImageNet**
 - Image data
 - 39 concepts

- **TRECVID IACC**
 - Video data
 - 61 concepts

- **UCF 101**
 - Video data
 - 5 concepts
Experiment - Dataset

Training time

- **ImageNet**
 - Image data
 - 39 concepts
 - 3 sec / concept (30000 shots)

- **TRECVID IACC**
 - Video data
 - 61 concepts

- **UCF 101**
 - Video data
 - 5 concepts
 - 2 min / concept (30000 shots)
Experiment - Dataset

Used in this study

List of some concepts selected for each query

<table>
<thead>
<tr>
<th>query_id</th>
<th>ImageNet</th>
<th>TRECVID</th>
<th>UCF 101</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td></td>
<td>Outdoor</td>
<td>playingGuitar</td>
</tr>
<tr>
<td>502</td>
<td>bookshelf</td>
<td>Indoor Speaking_to_camera</td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>drum</td>
<td>Indoor drumming</td>
<td></td>
</tr>
</tbody>
</table>

- ...
- ...
- ...
Experiment - Result

Performance comparison between Imbalanced, Balanced and LSTM on each of the 30 queries

![Graph showing the comparison of Imbalanced, Balanced and LSTM performance on each of the 30 queries. The x-axis represents the queries from 501 to 530, and the y-axis represents the AP values from 0 to 0.35. The graph includes three lines representing Imbalanced, Balanced, and LSTM, with distinct markers and colors for each.]
Experiment - Result
Performance comparison between Imbalanced, Balanced and LSTM on each of the 30 queries

Using imbalanced training examples leads to higher average precisions than using balanced ones.
Experiment - Result

Performance comparison between Imbalanced, Balanced and LSTM on each of the 30 queries

- Using LSTM is more than three times higher than the ones not-using LSTM.
Experiment - Result

Performance comparison between our method and the other methods developed for the manually-assisted category in AVS task

![Graph showing MAP performance comparison between LSTM and Other Methods](image)

- **MAP**
 - LSTM: Imbalanced
 - Balanced

Legend
- **Ours**
- **Others**
Experiment - Result

Performance comparison between our method and the other methods developed for the AVS task
Conclusion

Video search through efficient transfer learning using microNN
 • fast
 • flexible

Imbalanced examples are more useful than balanced examples

Validity of acquired temporal characteristics by LSTM
Future work

Further experiments by using LSTM on reduced frame interval.

one video frame every 30 frames in a shot

more densely sampled video frames
Future work

Acquiring temporal characteristics using optical flow.

Before detecting objects in a scene, we can first classify its environment to improve the performance.