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Abstract

In this paper, we summarize our work at the video-to-
text description task (VTT) of TRECVID 2017. This year
we participated in the matching and ranking subtask of
VTT. Our entry is based on the Word2VisualVec [13] and
a newly devised Spatial Enhanced Representation (SER).
The Word2VisualVec is a deep neural network architecture
that learns to predict a deep visual encoding of textual in-
put. It is the winning entry in the VTT task of TRECVID
2016. We improve the Word2VisualVec by replacing the
average pooling on the textual input with the multi-scale
sentence vectorization [6] and using an improved triplet
ranking loss [7]. The SER consists of two neural network
branches which project videos and sentences into a learned
latent space, respectively. For the video side branch, the
model extracts an enhanced spatio-temporal representation
for the input video. We implement this by learning a GRU
with skip-connections that allow bypassing of the spatial
feature. Our best run is the ensemble of six models which
are variants of Word2VisualVec and SER. It leads the eval-
uation with a great margin in the context of all submissions
from ten teams worldwide.

1. Approach

This year we participated in the matching and rank-
ing subtask. In the subtask, participants were asked to
rank a list of pre-defined sentences in terms of the cross-
media similarity for a given video. This task is challeng-
ing, as videos and sentences are two distinct modalities
and they are not directly comparable. Our solution is pro-
jecting the video and the sentence into a common space
where their similarity is computed. We choose two spaces
as the common space, that is, a visual feature space and
learned latent space. For the visual feature space, we rely
on Word2VisualVec, but using an improved triplet ranking
loss [7]. The Word2VisualVec will not be introduced here.

We refer the interested reader to [6]. For the learned la-
tent space, we design a model that consists of two neural
network branches to project sentences and videos into this
space. On the sentence side branch, we utilize multi-scale
sentence vectorization [6] to represent sentences. On the
video side branch, we propose Spatial Enhanced Represen-
tation to extract an enhanced spatio-temporal representation
from the input video. Hence, we name our proposed model
as SER. In what follows, we introduce the input representa-
tion, followed by the details of the SER.

1.1. Input Representation

Video representation Following the good practice of us-
ing pre-trained ConvNets for video content analysis [5, 11,
15], we use a ResNet152 model [8] pre-trained on the full
ImageNet dataset with over 10 million images and 10 thou-
sand classes. Specifically, given a video, frames are uni-
formly sampled from the video with an interval of 0.5 sec-
onds. For each frame, we take the output of the last pooling
layer of the ResNet152 (pool5) as its feature vector. Finally,
the input video is represented by {v1, ..., vN}, where N is
the number of video frames and vn is a 2048 dimensional
feature vector corresponding to the n-th frame.

Sentence representation To handle sentences of vary-
ing length, we first vectorize each sentence. We employ
multi-scale sentence vectorization [6] which jointly utilizes
the bag-of-words (BoW), word2vec [12] and Gated Recur-
rent Unit (GRU) [4] based text encodings to vectorize the
sentence. Given a sentence q, the representation is obtained
by concatenating the three representations:

s(q) = bow(q)
n
word2vec(q)

n
gru(q), (1)

where
f

denotes the concatenation operation of vectors,
bow(q), word2vec(q) and gru(q) respectively indicate
BoW, word2vec and GRU based representation. For more
details of multi-scale sentence vectorization, please refer
to [6]. Note that the GRU is trained with the whole SER
model in an end-to-end manner.
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Figure 1. The overview of Spatial Enhanced Representation (SER) which project videos and sentence into a learned latent space by two
neural network branches.

1.2. Spatial Enhanced Representation

Figure. 1 illustrates the structure of our proposed SER.
It consists of two neural network branches that respectively
project videos and sentences into a learned latent space.
The similarity between videos and sentences can be readily
computed in the learned latent space. We adopt the cosine
similarity as the similarity metric. Given a video, we rank
all candidate sentences in terms of their cosine similarity
with the video.

Video side branch As videos contain rich spatial and
temporal structure, capturing both spatial and temporal in-
formation is necessary. Average pooling and Recurrent
Neural Network (RNN) are commonly used to encode
videos. However, applying average pooling loses the tem-
poral information contained in the video. Although using
the RNN is able to capture more temporal information, it
tends to lose some essential spatial information. Inspired
by this, we propose to extract an enhanced spatio-temporal
representation for videos. We implement this by learning a
GRU with skip-connections that allow bypassing of the spa-
tial feature. Moreover, a soft attention is employed on the
output of the GRU to generate a context vector by attending
to certain frames of the video.

More formally, given a video of {v1, ..., vN}, we first
feed them sequentially into a GRU module to get a sequence
of hidden state vectors {h1, h2, ..., hN},

hn = GRU(vn, hn−1), n ∈ 1, 2, ..., N. (2)

In order to prevent the loss of spatial information, we em-
ploy skip-connections to concatenate original visual fea-
tures of video frames with the outputs of the GRU, obtain-
ing a series of enhanced spatio-temporal feature vectors:

sn = hn
n
vn, n ∈ 1, 2, ..., N. (3)

Moreover, the soft attention mechanism is applied to the en-
hanced spatio-temporal feature vectors. For simplicity, we
omit the bias term b in the following equations. The atten-
tion map α = {αn}Nn=1 is computed by a 2-layer neural
network and the softmax function, that is:

mn = tanh(Wssn)� tanh(Wvv), n ∈ 1, 2, ..., N, (4)

rn = wmmn, n ∈ 1, 2, ..., N, (5)

a = softmax(

Nn

n=1

rn), (6)

where
f

denotes the concatenation operation of scalars, Ws,
Wv are the trainable matrices,wm is the trainable vector and
� indicates the element-wise multiplication. Additionally,
v denotes the average feature vector of video frames, that is
v = 1

N

∑N
n=1 vn. With the attention map α, the attentive

feature vector of the video is then calculated by

va =

N∑
n=1

αnsn. (7)

We further project the attentive feature vector va in a
learned latent space by two fully connected layers. Each
fully connected layer is followed by the batch normaliza-
tion [9] and ReLU activations. More concretely, given a
video x, we obtain the video representation v(x) in the
learned latent space as:

gx = σ(BN(Wx′va + bx′)),
v(x) = σ(BN(Wx′′gx + bx′′)),

(8)

where Wx′ and Wx′′ are the trainable parameters, bx′ and
bx′′ are the bias terms, BN indicates the batch normaliza-
tion and σ(·) denotes the ReLU activation.



Sentence side branch Similar to the video video branch,
two fully connected layers with batch normalization and
ReLU activations are used to embed sentences into the
learned latent space. Given a sentence q, the sentence is
represented in the space as

qx = σ(BN(Wq′s(q) + bq′)),
v(q) = σ(BN(Wq′′gq + bq′′)),

(9)

where Wq′ and Wq′′ are the trainable parameters, bq′ and
bq′′ are the bias terms, and s(q) indicates the multi-scale
sentence feature vector computed in Eq. 1.

1.3. Learning algorithm

Objective function In order to train the model, we use
an improved triplet ranking loss [7] which penalizes the
model according to the hardest negative examples. Spe-
cially, the improved triplet ranking loss l(x, q) for a video-
sentence pair (x, q) is defined as:

l(x, q; θ) = max
q′

[α+ s(x, q′)− s(x, q)]+, (10)

where q′ is a hardest negative sentence sample for the video-
sentence pair (x, q), [·]+ indicates function of [y]+ =
max(y, 0), s(·, ·) denotes the cosine similarity function,
and θ indicates all the trainable parameters in the model.
Following [7], we define the hardest negative example as the
most dissimilar sentence sample in a mini-batch. We train
the model to minimize the overall improved triplet ranking
loss on a given training setD = {(x, q)}, containing a num-
ber of relevant video-sentence pairs:

argmin
θ

∑
(x,q)∈D

l(x, q; θ). (11)

Optimization We solve Eq. (11) using stochastic gra-
dient descent with RMSprop [14]. This optimization algo-
rithm divides the learning rate by an exponentially decaying
average of squared gradients, preventing the learning rate
from effectively shrinking over time. We empirically set
the initial learning rate η = 0.0003, decay weights γ = 0.9
and small constant ε = 10−6 for RMSprop. We apply the
dropout to all hidden layers to mitigate model overfitting,
with the rate of 0.2. Lastly, we take an empirical learning
schedule as follows. Once the validation loss does not de-
crease in two consecutive epochs, we divide the learning
rate by 2. The early stop occurs if the validation perfor-
mance does not improve in five consecutive epochs. The
maximal number of epochs is 50.

2. Evaluation
2.1. Dataset

This year NIST did not provide any training data, so
we train our model on the aggregation of three external

Table 1. Overview of datasets used in our submission.
Dataset # Videos # Sentences

Train
MSVD [3] 1,970 80,863
MSR-VTT [16] 10,000 200,000
TGIF [10] 101,980 125,672

Validation tv2016train [1] 200 400

Fine-Tune tv2016test [1] 1,915 3,830

datasets, namely MSR-VTT [16], MSVD [3] and TGIF
[10]. Additionally, we also use the training and the test set
provided for the VTT task in TRECVID 2016 [1], as their
video source are the same as the test set of this year. For the
ease of reference, we name two datasets as tv2016train and
tv2016test. We use the tv2016train for cross-validation and
the tv2016test for fine-tuning the models trained on the ex-
ternal training sets. The tv2016train and the tv2016test re-
spectively consist of 200 and 1,915 videos, and each video
is associated with two sentences. An overview of datasets is
given in Table 1. Note some videos of TGIF are corrupted,
which have been removed. The TRECVID organizer pro-
vides four test sets this year, denoted as set 2, set 3, set 4
and set 5. Each test set has 1,613, 795, 388 and 159 videos
respectively [2].

2.2. Submissions

DL-61-86.run1 Run1 is based on our entry for VTT task
in TRECVID 2016 [13]. But we use new features extracted
from ResNet152, use the multi-scale sentence vectorization
to represent sentences and optimize the model with an im-
proved triplet ranking loss. Moreover, we additionally ap-
ply the batch normalization after each fully connected lay-
ers, which further improve the performance. This run is not
fine-tuned on the tv2016test set.

DL-61-86.run2 Run2 is the SER model described in the
Section 1, which learns a learned latent space where the co-
sine similarity between the video and the sentence is com-
puted. This run is also not fine-tuned on the tv2016test set.

DL-61-86.run3 Run3 ensembles six models: 1) run1, 2)
Similar to run1, while it uses the word2vec as the sentence
representation, 3) run2, 4) Similar to run2, while it uses the
word2vec as the sentence representation, 5) Similar to run2,
while it uses the average pooling instead of the soft atten-
tion, 6) Similar to run2, while it uses the word2vec as the
sentence representation and the average pooling instead of
the soft attention. Each model is trained with two differ-
ent random initialization without fine-tuning. We fuse 12
similarities as the final similarity.

DL-61-86.run4 In run4, we ensemble six models used
in run3, while we fine-tune them on the tv2016test set with
initial learning rate 2e-5.
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Figure 2. State-of-the-art video-to-text matching and ranking results in the TRECVID 2017 benchmark, showing the good performance
of our models compared to other alternative approaches. The performance can be further improved by the model ensemble.
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Figure 3. Results generated by our proposed SER model in the test set 2.

2.3. Results

The performance metric is Mean Inverted Rank at which
the ground truth is found. Higher mean inverted rank
means better performance. As shown in Figure. 2, our
runs lead the evaluation with a great margin on all test
sets. Moreover, model ensemble boosts the performance
further, which demonstrates that the visual feature space
and learned latent space are complementary for calculat-
ing the similarity. Some qualitative results generated by our
proposed SER are shown in Figure. 3.
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