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Abstract

The IRIM group is a consortium of French teams work-
ing on Multimedia Indexing and Retrieval. This paper
describes its participation to the TRECVID 2017 in-
stance search task.

1 Introduction

The TRECVID 2017 instance search task is described
in the TRECVID 2017 overview papers [1, 2, 3].

A new type of query was introduced in 2016 and
continued in 2017: asking to retrieve specific persons
in specific locations.

These queries are applied on a dataset consisting
of videos from the BBC EastEnders soap opera. 30
mixed queries are built from 10 locations (Cafe1,
Cafe2, Foyer, Kitchen1, Kitchen2, Laundrette, Livin-
gRoom1, LivingRoom2, Market and Pub) and 15 per-
sons (Archie, Billy, Brad, Dot, Fatboy, Ian, Janine,
Jim, Pat, Patrick, Peggy, Phil, Ryan, Shirley and
Stacey). This year topics include for example: Peggy
in Cafe1 or Billy in Laundrette.

Two conditions are considered:

• A : only provided images are used as examples

• E : video are used as examples (and optionally im-
age examples)

Four French laboratories (CEA LIST, LaBRI,
LIMSI, LISTIC) as part of IRIM consortium (coordi-
nated by Georges Quénot, LIG) collaborated to partic-
ipate to the TRECVID 2017 instance search task with
fully automatic runs.

The IRIM approach to retrieve the shots containing
a specific person in a specific location consists in three
steps: first person recognition and location recognition

are performed independently, then a late fusion is ap-
plied to produce the mixed query result.

2 Person recognition

For person recognition, two methods were developed by
LIMSI and CEA LIST.

2.1 LIMSI method

For person recognition, the face recognition method de-
veloped by LIMSI is derived from the work described
in [4].

The face recognition module is actually built upon
three submodules. First, shot boundaries are detected
using optical flow and displaced frame difference [5].

Then, face tracking-by-detection is applied within
each shot using a detector based on histogram of ori-
ented gradients [6] and the correlation tracker proposed
in [7]. More precisely, face detection is applied every
500ms, and tracking is performed at 25fps in both for-
ward and backward directions.

Finally, each face track is processed using the ResNet
network with 29 convolutional layers [8] available in
the dlib machine learning toolkit [9]. This network
was trained on both FaceScrub [10] and VGG-Face [11]
datasets to project each face into a 128-dimensional Eu-
clidean space, in which faces from the same person are
expected to be close to each other. Each face track is
described by its average face embedding and compared
with that of the target person using the Euclidean dis-
tance.

Two variants were tested, that differ only in the way
the target embeddings were obtained. In the first case,
we apply face detection on the (four) provided exam-
ple images and use the average face embedding. In the
second case, we search the test set for the face tracks



corresponding to the provided example images and use
face track average face embeddings – hopefully making
the resulting embedding less sensitive to pose and il-
lumination variability. The results obtained by these
two variants are hereinafter referred to respectively as
pers1A and pers1E.

The source code for this module is available in
pyannote-video [12], that was initially introduced in [4].

2.2 CEA LIST method

Faces are detected with the OpenCV implementation of
the Viola-Jones algorithm[13] using two cascades (front
and profile). On the videos, faces are detected every
three frames, each frame being resized in such a way
that its largest size is less than 500 pixels. On the
training dataset, faces are detected in every image with
the same process.

Then, most of the study deals with the face descrip-
tion and more particularly the usage of external sources
to define the recognition model. The following external
sources of information have been considered:

• images automatically collected on the Bing and
Google web search engines. In practice, we collect
the n=50 first answers to the query ”eastender
XXX” where XXX is the name of the character
collected from the images provided with queries

• images coming from You Tube videos that are col-
lected using the same queries as for Bing. The
videos are split into individual frames before be-
ing re-ranked in order to retain only relevant faces.

• images automatically collected on Wikipedia. We
use the same query as for Bing, and selected the
first article returned that include the character’s
name . Then, we collected the image of the infobox
of the article.

After testing on development data, we only consider
the images coming from YouTube, Google and Bing.
The images that are collected automatically are then
re-ranked according to the method presented in [14].
More precisely, a kNN-based re-ranking is applied in or-
der to select images that are likely to depict EastEnders
characters. The selected images are then described by
the FC7 of a VGG network [15] that has been adapted
to faces according to the method given in [16]. The net-
work is trained with over 5, 000 identities and approx-
imately 800 images per identity. Training images are
collected from Bing and are automatically re-ranked
using the same kNN-based procedure as for EastEn-
ders characters. This model attains a 98.6% accuracy
on the LFW dataset. This set of signature constitutes
a model of reference for the topics considered. When
we use only images from Bing, the model has an av-
erage of 20 signatures per person. When we consider

Google and YouTube, the model has an average of 147
signatures per person.

The same signature is used to describe each face de-
tected in the collection. For each such face, the sys-
tem searches its closest neighbors in the model of ref-
erence in terms of Euclidean distance. Several criteria
were tested to determine whether the face has to be
attributed to one of the EastEnders queries, leading to
quite similar performances. We finally adopt a decision
criterion based on the coherency of the four first neigh-
bours: if they are the same, the tested face is attributed
to this identity.

As this method uses auxiliary videos, it was only used
for runs of E condition. This method is hereinafter
referred to as pers2E.

3 Location recognition

For location recognition, two methods were developed
by LaBRI and LISTIC.

3.1 LaBRI method

Similarly to INS 2016 in LaBRI method[17], the clas-
sical Bag-of-Words (BoW) approach with similarity
search was applied. It consists in the following. First,
sparse features are detected on regions of each example-
frame and described by a feature descriptor. Feature
descriptors are then quantized into visual words, creat-
ing a visual vocabulary. A similarity is then computed
between histogram of quantized features of query frame
and those of database frames.

For features detection, the Harris-Laplace described
in [18] detector is used. Detections are filtered out if
they belong to bounding boxes of characters (see Sec-
tion 3.1.1). Kept detected interest regions are then
described by the OpponentSIFT descriptor (of dimen-
sion 384). The RootSIFT [19] post-processing step is
applied.

Approximate k-means algorithm [20] is then used to
compute a vocabulary of k=1M visual words. Vocab-
ulary on Opponent SIFT descriptors is computed on
24K randomly selected frames from the shots, with one
image extracted per shot (that is 5% of the 471K shots).
Hard assignment is used to compute the BoW signa-
ture. BoW is then weighted by the tf-idf scheme [21].

To compute shot signatures, a temporal aggregation
is used. Several keyframes are uniformly extracted per
shot, at a given frame rate. A global histogram is com-
puted for all the keyframes of the shot and averaged
over the shot. This is the joint average scheme or av-
erage pooling used in [22]. This histogram is then nor-
malized. Keyframes are extracted at a rate of 1 fps
(that represents ∼1.57M images for the 471K shots).

For query, in the A condition (only images used as
examples for topics), the normalized BoW vector of



each example image is used as query signature. In the
E condition (video examples used for topics), the sig-
nature of the shot to which belongs the example image
is used as query signature. A similarity (or distance)
is then computed between the query signature and all
the shots of the dataset (accelerated with an inverted
file index).

We used L2-norm and the cosine similarity respec-
tively for histogram normalization and similarity mea-
sure. Other combinations could be considered. Table 2
in Section 6 gives some results for the following com-
binations: L1-norm/L1 distance, L2-norm/L2 distance
and L2-norm/cosine similarity.

Some filtering (see Section 4) and a re-ranking step
(see Section 3.1.2) are then applied.

Each example image (or shot in E condition) e, of
each location l, is queried against each shot s, to ob-
tain a similarity Sim(e, l, s). A late fusion operator is
applied to get a similarity Sim(l, s) for each location l
with regard to each shot s. The MAX operator is used.

The results obtained by this method are hereinafter
referred to as loc1.

3.1.1 Characters filtering

As EastEnders is a soap opera, scenes consist mainly of
two or more characters interacting at a given location.
Besides, numerous shots show the main characters, shot
in close-up, talking to each other, and with not much
motion. So a significant part of the features extracted
for a frame and even a shot is detected on characters.
To compute a shot signature that better represents the
location, we want to remove all the descriptors detected
on characters and keep only those corresponding to the
actual location. Hence, we detect characters to filter
out features located on them.

To detect characters, we took advantage of the face
detection already performed for the face recognition
step (see Section 2.1). From a face bounding box, we
construct a bounding area that roughly encompasses
the character bounding box. Figure 1 gives an example
of such a construction. It is a very coarse approxima-
tion of the person bounding box, but it is very fast to
compute. Detected features are then filtered keeping
only those outside these bounding areas. This filtering
process is applied to all the keyframes extracted for the
shot.

3.1.2 Re-ranking

A re-ranking step is performed on the top ranked shots
of the query results. The method is inspired from [23].
First, as queries have several images and shots contain
multiple frames, it would be impractical to verify ev-
ery image-frame pair. A representative pair of query
image and video frame is thus selected. For each shot
and each query topic, the pair of video frame and query

(a) (b)

(c) (d)

Figure 1: Example of a frame with characters bound-
ing area computation and filtering of keypoints. (a) a
keyframe with face detections as bounding boxes. (b)
the bounding areas computed for characters. (c) the
(3514) features detected on the whole frame. (d) the
(2488) kept features after filtering thanks to characters
bounding areas. Programme material copyrighted by
BBC

image whose BoW histogram L1 distance is minimal is
selected as representative. Then, for this representa-
tive pair, a VQ-based feature matching is performed in
which features quantized to the same words are con-
sidered as matches. Finally, a RANSAC method is ap-
plied to find the number of matches following the same
affine transformation of image plane. This re-ranking
method is practical for large datasets in particular be-
cause matching is rather fast to compute: there is no
computation of distances between actual features and
thus no need to load these features from disk. We ap-
plied this re-ranking step on the top 3300 results of
each location query.

3.2 LISTIC method

LISTIC experimented with location recognition using
a similarity metric comparing features extracted from
a pretrained DCNN without any additional training.
The aim was to propose a fast and light approach with-
out neither explicit overfitting nor specialization to the
target data.

The GoogLeNet architecture GoogLeNet-places365
[24] pretrained on the Places365 location classification
dataset was considered. This differs from the 2016 INS
submission where the involved network was trained on
the more restricted Place205 dataset that limit adap-
tation to new contexts. The pool5/7x7 s1 layer output



was considered to generate the feature vectors. Loca-
tion recognition is performed by comparing the features
extracted from the few 90 reference images with the
ones of a set of n = 10 frames regularly sampled in
time all along the candidate video shots. Last year, a
similarity metric considering the candidate video shot
location feature variability and inter location feature
variability measured from the reference image set was
considered but did not prove to be efficient. This year
a more selective approach is chosen by looking for the
average of the shortest distances between each video
shot image sample and the reference images of each
target location. Formally, for each of the n sampled
images of a given candidate video shot, the minimum
distance to each target location is computed and av-
eraged over n. Considering that a video shot presents
only a reduced camera rotation, then, the main visual
scene features are maintained and averaging cleans the
distance measure between shot s and location l that is
further denoted minDistLocation(s, l).

A similarity score to each target location is then com-
puted using equation 1 where topicsDistStd is the stan-
dard deviation of the distances between locations com-
puted from the 90 reference images.

Sim(s, l) = exp

(
minDistLocation(s, l)

topicsDistStd

)
(1)

This method actually performed better than the pre-
vious attempt while reducing computational cost. In
the end, the computational resources are consumed
by the convolutional network inference that requires
800ms to process each video shot on average using a
NVIDIA K80 GPU.

The results obtained by this method are hereinafter
referred to as loc2.

4 Filtering of Query Results

Three filtering steps may be applied to the results of
queries.

4.1 Credits filtering

The videos from the dataset may contain extra shots
unrelated to EastEnders soap opera. In particular,
they often contain advertising at the end. As these
videos often have opening and end credits, we can de-
tect those in order to remove unrelated shots from re-
sults. More precisely, we need to filter out all the shots
before the last frame of the opening credits and after
the first frame of the end credits.

One difficulty is that the credits are not exactly the
same in all the videos. Figure 2 shows examples of
frames used for credits.

(a) (b)

(c) (d)

Figure 2: Examples of opening and end credits frames.
(a), (b) and (c) show different opening credits last
frame examples. (d) shows an example of first frame of
end credits, with the start of the rolling credits at the
bottom. Programme material copyrighted by BBC

To detect opening and end credits respectively last
and first frame, we use a near duplicate frame detection
method. The last frame of opening credits is searched
from the start till the N1-th frame of the movie. The
first frame of the end credits is searched from the N2-
th frame of the movie till the end of the video. N1 is
arbitrarily set to 3500. N2 is computed to be 97% of
the movie length. On these segments, we compute the
minimal distance between the current frame and a set
of example frames (see Figure 2). The distance is com-
puted as one minus the correlation of the histograms
(of 32 bins) computed on the luminosity channel of the
two frames. If the minimal distance is below a fixed
threshold, frames are considered to be duplicate.

If the end (resp. start) of the opening (resp. end)
credits is found, the similarities of shots correspond-
ing to frames before (resp. after) this frame are sub-
stantially lowered. This filtering operation is here-
inafter referred to as pc. The new similarity pc(sim)
is computed as a fraction of the current similarity sim:
pc(sim) = αc ∗ sim, with αc respectively set to 0.1 and
0.2 for opening and end credits.

This filtering using opening and end credits is here-
inafter referred as C.

4.2 Indoor/Outdoor shots filtering

For query regarding an indoor (respectively outdoor)
location, results should also contain only indoor (re-
spectively outdoor) locations. To this end, an in-
door/outdoor classifier is applied to the query images



and shots, and only shots of the same category than
the query image (or shot) are kept in the results.

This classifier is built on the Places365 database and
models, derived from the work by [25]. The 365 cate-
gories of the database have been manually classified:
190 categories as indoor, 175 categories as outdoor.
The pre-trained Places365 VGG16 model is applied
to each image. An image is classified as indoor (re-
spectively outdoor), if the majority of the 365 cate-
gories are in the indoor (respectively outdoor) category.
Time permitting, this rudimentary classifier should be
replaced by one model fine-tuned to detect these two
categories.

This filtering using indoor/outdoor categorization is
hereinafter referred as I.

4.3 Shot threads filtering

Inspired from [26], we compute shots threads, that is
temporally constrained clustering of shots that appear
similar. A shot belongs to a cluster if the intersection
of the BoW signatures between this shot and the other
shots of the cluster is inferior to a threshold.

From these shots threads, a filtering step of results
is derived where similarities of shots belonging to the
same shot thread (or cluster) are combined with a fu-
sion operator.

We used a fusion operator derived from MAX opera-
tor. This operator computes the new similarity sim′(s)
of shot s from its initial similarity sim(s) and the max-
imum similarity of the shot thread t this way:

sim′(s) = β ∗ sim+ (1− β) ∗MAX(si)
si∈t

(2)

We used low values of β (typically 0.2).
This filtering using shots threads is hereinafter re-

ferred as T .

5 Late Fusion

Once the scores for the face recognition and location
recognition steps are computed, we apply a late fusion
operation, denoted ⊕. As scores are of different nature
(distances for pers1 and pers2, similarities for loc1 and
loc2), the fusion operator is applied on the ranks. For
two ranks rank1 and rank2, the chosen operator ⊕ is
a simple linear combination of the ranks:

⊕(rank1, rank2) = α ∗ rank1 + (1− α) ∗ rank2 (3)

This operator may be used to fuse the two location
results, and the two person results independently. Then
it is finally used to fuse person and location results.

We also tested an alternative fusion method, simi-
lar to ⊕, except that a power function is applied to
ranks beforehand. This alternative fusion method is
hereinafter referred to as �.

6 Evaluation of the submitted
runs

Seven runs were submitted for both conditions A and E
by IRIM in 2017. Table 1 presents the results obtained
by these runs as well as the best and median runs for
comparison.

rank System/run MAP
1 Best run: F E PKU ICST 1 0.5491
7 F E IRIM 1 0.4466
8 F E IRIM 2 0.4173
9 F E IRIM 3 0.4100
12 F A IRIM 2 0.3889
13 F A IRIM 3 0.3880
17 F E IRIM 4 0.3783
18 F A IRIM 4 0.3769
16 Median run 0.3800

Table 1: IRIM, best and median runs results among
the 31 fully automatic INS submitted runs.

The six fully automatic runs of PKU-ICST were
ranked first, thus IRIM with its best run finished sec-
ond of seven participants.

The seven submitted runs by IRIM may be described
by the following equations (where ⊕ and � are ranked
based fusion methods):

F E IRIM 1 = ((p1E ⊕ p2E)⊕ (l1E ⊕ l2E))

F E IRIM 2 = (p1E ⊕ (l1E ⊕ l2E))

F E IRIM 3 = (p1E ⊕ l1E)

F E IRIM 4 = (p1E � l1E)

F A IRIM 2 = (p1A⊕ (l1A⊕ l2A))

F A IRIM 3 = (p1A⊕ l1A)

F A IRIM 4 = (p1A � l1A)

where:

p1E = pers1E + T

p2E = pers2E + T

l1E = loc1E + C + I +R+ T

l2E = loc2E + C + I + T

and likewise for A condition.
As a remainder:

• C indicates the begin and end credits filtering

• I indicates the indoor/ourdoor filtering

• T indicates the filtering by shots threads

• R indicates the application of the re-ranking step



In F E IRIM 1, all four individual methods are
used. As pers2 is only available for the E con-
dition, F A IRIM 1 was not be submitted. In
F {A,E} IRIM 2, only three individual methods are
used. In F {A,E} IRIM 3, only two individual
methods are used. F {A,E} IRIM 4 is similar to
F {A,E} IRIM 3 except that an alternative fusion
function is used.

We used α = 0.99 for the fusion of the location recog-
nition methods, α = 0.70 for the fusion of the person
recognition methods, and α = 0.42 for the final fusion.

From Table 1, we can make several observations:

• The alternative fusion function � (used in runs
F E IRIM 4 and F A IRIM 4) is worse than the
original fusion ⊕.

• The runs in the E condition are better than the
runs in the A condition.

• The differences between F E IRIM 2 and
F E IRIM 3, and between F A IRIM 2 and
F A IRIM 3, seem to indicate that loc2 does not
bring much improvements to loc1 alone.

• The difference between F E IRIM 1 and
F E IRIM 2 seems to indicate that that pers2E
fused with pers1E brings some improvements to
pers1E alone.

In order to better understand the individual contri-
butions of our methods, some groundtruth is required.
With the results, NIST also provides the groundtruth
for mixed queries (person P in location L). But to as-
sess the individual results of location or person recog-
nition methods, individual groundtruth for locations
and persons is needed. To this end, we have ex-
tracted individual groundtruth from the NIST pro-
vided groundtruth. Indeed as we have the groundtruth
for a person P in locations L1, ..., Ln, we can extract
the individual groundtruth for P as the union of all
groundtruth relative to P . Likewise, we have the
groundtruth for persons P1, ..., Pn in location L, we can
extract the individual groundtruth of L as the union of
all groundtruth relative to L. It is noteworthy that the
groundtruth extracted this way is very incomplete. In
particular, if a person P is present in numerous loca-
tions different that the ones in the mixed queries, these
shots will not be in the groundtruth of P .

Table 2 presents the mAP computed on our differ-
ent individual methods and some variants, for both the
2016 and 2017 queries. This mAP is computed on all
the returned shots and not only on the first 1000 shots
as for the mixed query results. Indeed, as our last fu-
sion step between person and location results is some
kind of intersection, it is possible that a shot with per-
son P in location L appears at an elevated rank in each
individual results.

As the groundtruth is only partial, the mAP com-
puted with this groundtruth on our individual meth-
ods, reported in Table 2, is not exact and probably
underestimated. However, it gives a broad idea of the
performance of our methods.

Some observations can be drawn from these results:

• A1, A2 and A3 underline that the choices
of the histogram normalization and the dis-
tance/similarity methods impact the BoW perfor-
mance. Here, L2/Cosine produces better results.

• A3 and A4, A7 and A9, and B2 and B3, seem to in-
dicate that the two filter options C and I have very
little influence on the results. Indeed, they filter
very few shots from the results (respectively less
than 0.03% and 0.08% of the shots) and moreover
these filtered shots should be ranked rather low if
the recognition method already works correctly.

• A3 and A5, and A7 and A6, emphasize the
improvements brought by the filtering by shots
threads.

• A6 and A3, and A5 and A7, highlight the improve-
ments brought by the re-ranking step.

• A6 and C1, A7 and C2, or A9 and C3 seem to
indicate that the gain of fusion of loc2 with loc1 is
limited.

• D1 and D3, D2 and D4, or E1 and E2, seem to
indicate the gain of filtering by shots threads is
limited for person recognition methods.

• For D3 and F3, it seems there is a small improve-
ment. For D4 and F4, it is not clear if there is an
improvement on both 2016 and 2017 queries. This
lack of difference may be due to the incomplete
groundtruth. Indeed pers2E method has tendency
to bring a wider variety of poses in the recognized
persons than pers1E.

• There is a clear difference between 2016 and 2017
results for person recognition methods. A care-
ful analysis of the individual query results reveals
that for some specific persons of 2016 topics, our
methods produce very poor results.

In order to better understand which combinations
of methods bring the best results, we consider another
(unsubmitted) run F E IRIM 5, such as

F E IRIM 5 = ((p1E ⊕ p2E)⊕ l1E)

Besides, restropectively, we also build F E IRIM X’
and F E IRIM X” runs. F E IRIM X’ is the run
F E IRIM X where fusion weights have been optimized
for the 2017 NIST groundtruth. F E IRIM X” is the
same than F E IRIM X’ except that credits and in-
door/outdoor filters (C+I) have not been used. Table 3
shows the results of these optimal (unsubmitted) runs.



Method
MAP

2016 2017
A1) loc1E (nL1/L1) 0.1836 0.1050
A2) loc1E (nL2/L2) 0.1777 0.1334
A3) loc1E (nL2/Cosine) 0.2551 0.2075
A4) loc1E (nL2/Cosine) + C + I 0.2575 0.2093
A5) loc1E (nL2/Cosine) + T 0.2766 0.2256
A6) loc1E (nL2/Cosine) + R 0.2965 0.2449
A7) loc1E (nL2/Cosine) + R + T 0.3292 0.2838
A8) loc1E (nL2/Cosine) + C + I + T 0.2783 0.2267
A9) loc1E (nL2/Cosine) + C + I + R + T == l1E 0.3302 0.2851
B1) loc2E 0.0663 0.0623
B2) loc2E + T 0.0999 0.0865
B3) loc2E + C + I + T == l2E 0.1000 0.0863
C1) A6 ⊕ B2 0.3016 0.2490
C2) A7 ⊕ B2 0.3341 0.2853
C3) A9 ⊕ B3 0.3351 0.2862

D1) pers1A 0.1305 0.0613
D2) pers1E 0.1425 0.0656
D3) pers1A + T 0.1489 0.0708
D4) pers1E + T == p1E 0.1686 0.0769
E1) pers2E 0.1230 0.0448
E2) pers2E + T == p2E 0.1317 0.0484
F1) D1 ⊕ E1 0.1420 0.0662
F2) D2 ⊕ E1 0.1335 0.0703
F3) D3 ⊕ E2 0.1620 0.0768
F4) D4 ⊕ E2 0.1655 0.0790

Table 2: Individual methods evaluations on 2016 and 2017 queries, with individual (incomplete) groundtruth
extracted from NIST groundtruth.

(unsubmitted) runs
MAP

2016 2017
F E IRIM 1’ 0.2984 0.4493
F E IRIM 1” 0.2984 0.4516
F E IRIM 2’ 0.3031 0.4193
F E IRIM 2” 0.3025 0.4210
F E IRIM 3’ 0.2922 0.4130
F E IRIM 3” 0.2910 0.4119
F E IRIM 5’ 0.2762 0.3964
F E IRIM 5” 0.2736 0.3990

Table 3: Optimal runs (with and without credits and indoor/outdoor filters) on 2016 and 2017 queries with NIST
groundtruth.

Some observations can be drawn from these results:

• All F E IRIM X’ and F E IRIM X” are very
close. F E IRIM 1” is even slightly better than
F E IRIM 1’. It confirms that the two filtering
steps, on credits and indoor/outdoor classification
(F+I), are not beneficial.

• On 2017 topics, F E IRIM 5’, F E IRIM 3’ and
F E IRIM 2’ are worse than F E IRIM 1’. It

seems to indicate that the fusion of all four meth-
ods is the combination bringing the best improve-
ment. However, on 2016 topics, the results are
much closer to each other. Nevertheless these re-
sults (on 2016 topics) are better than the runs we
submitted in 2016.

• It can be observed that F E IRIM 5’ and
F E IRIM 5” are worse than other combinations



(0.02 of mAP decrease).

• Overall, results on 2017 topics are better than on
2016 topics. It is due to very poor results on some
specific 2016 topics, in particular on some person
recognitions (as seen in Table 2 discussion).

We will have to further investigate how to improve
the fusion of our individual methods, and in particular
of our person recognition methods.

7 Conclusion

Our system proposes a simple scheme that combines
two person recognition methods and two location recog-
nition methods, performs a late fusion on each type
individually, and applies a final late fusion to get the
mixed query results.

Our system effectiveness has been quite improved
compared to our previous year participation.

This partial evaluation shows that some steps are
particularly useful (shot threading for all methods, re-
ranking for loc1) and other do not bring significant im-
provements (credits and indoor/outdoor classification,
C+I) and may be removed.

This evaluation also emphasizes that our face and
location recognition methods have to be improved in-
dividually, and the fusion steps have to be further in-
vestigated to better understand which combinations are
the most effective.

In particular, several aspects of our methods seem to
be worth investigating.

• The location recognition method based on BoW
(loc1) gave encouraging results. However, the
character filtering is quite rough and it should be
explored if it does not filter out too many features.

• The location recognition method based on DCNN
(loc2) did not give the expected results. Apply-
ing a deep-learning approach effectively to location
search is still a challenge.

• The two face recognition methods seem to bring
faces in very different poses. It should be inves-
tigated if a better fusion could take advantage of
this diversity. Furthermore, it could also be inves-
tigated whether augmenting existing query exam-
ple images, as in pers2, would benefit the pers1
method.

• Filtering by thread shots (T) improved our results
and should be further examined.
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