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Abstract—This paper presents the result of the TRECVID 2017
AVS task by kobe nict siegen team. Consisting of three research
institutes Kobe University, NICT and University of Siegen. We
submitted the following three runs.

1) kobe nict siegen D M 1: This run uses feature vectors
extracted by a pre-trained convolutional neural network
(CNN) as input for a small-scale multi-layer neural network
called micro neural network (microNN). The microNN is a
lightweight detector fine-tuned to a target concept using a
balanced set of positive and negative data from ImageNet
and IACC video datasets. Finally, the results of several
microNNs are combined to generate the ranked result.

2) kobe nict siegen D M 2: This run is basically identical
to kobe nict siegen D M 1, but applys additional motion
features. The motion features are extracted by a motion
CNN which involves biologically-inspired motion thresh-
olding and competitive learning.

3) kobe nict siegen D M 3: This run is a degraded version of
kobe nict siegen D M 1, and apply fully averaged pooling
to feature vectors extracted with CNN, the dimention of
the vector is reduced from 3× 3× 2048 to 2048.

We also use a word2vec model to find synonyms of concepts in
order to improve the performance.

I. INTRODUCTION

By taking part in the ad-hoc video search task at TRECVID
2016, we were able to ascertain the efficiency of training
microNNs for various concepts as well as their reasonable
performance in concept retrieval tasks. This year [2], we
employed a word2vec model to compute vector representations
of words in the text description of a query, and find suitable
concepts. Features extracted from a CNN have shown a
great effectiveness in various recognition problems. Using the
features obtained from pre-trained CNN as input, we can train
several microNNs which are individually lightweight concept
detectors for concepts. Thanks to having only one hidden layer,
each microNN can be trained much faster than a lot traditional
methods such as SVM. The final classification results are
obtained by combining the outputs of multiple microNNs.

II. THE PROPOSED METHOD

Given an ad-hoc query sentence, we manually pick up
its key concepts. This process is enhanced by computing
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similarities between vector representations of words in the
query sentence and the ones of concept names based on a
word2vec model [8]. Key concepts are selected from a set
of concepts with high similarities. From each shot, we take
one frame every 30 frames as a key frame. Feature vectors
are extracted from these key frames using a CNN, and used
to train a microNN. Supplementary feature vectors extracted
from images in ImageNet dataset are used.

Fig. 1 shows the list of concepts’ name in ImageNet and
TRECVID video dataset selected for each query in this study.
An arrow indicates that a model in the left-hand side is
transferred to the one in the right-hand side. For example, in
the query 531 “one or more people eating food at a table
indoors”, the concept “people” found in ImageNet can be
transfered to the concept “Two People” found in TRECVID
video dataset, given the high similarity between their respec-
tive word representations.

Fig. 2 shows an overview of the three methods used to
construct microNNs for the concepts in Fig. 1. The outputs of
a hidden layer in a CNN are used as features to train microNNs
in kobe nict siegen D M 1, kobe nict siegen D M 2, and
kobe nict siegen D M 3. Transfer learning is performed to
train a microNN on video features by initializing its weight
parameters as the ones learned by a microNN on image
features. In addition, we combine the features obtained from
ResNet [3] and motion CNN as input to microNNs in the
kobe nict siegen D M 2.

ResNet is a deep residual network with shortcut connec-
tion added to each pair of filters. It won the first place
on tasks such as ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation [4] in ILSVRC &
COCO 2015 competitions. ResNet has a lower computational
complexity despite its very deep architecture. For the best
tradeoff between computational cost and accuracy, we use
the 101 layers version of ResNet constructed by Chainer [5],
which is a flexible framework for deep learning similar to
Caffe [6], TensorFlow [7] and so on. It supports various
network architectures and CUDA acceleration.



Fig. 1. A list of concepts selected for each query.

Fig. 2. An overview of our three AVS.

A. Concept Selection Using Word2Vec

Our first task is to find concepts related to a given topic. To
this end, we employ a word2vec model that produces vector
representations of words based on a neural network with a
single hidden layer [8]. This model is used to compute vector
representations of words in the topic and the ones from the
concept names. Then, for each word in the topic, we select
concepts whose vector representations are highly similar to
that of the word. The word2vec model can accurately measure
this kind of linguistic similarities because of its simple network
architecture. In other words, compared to complex neural
networks (with non-linear hidden layers), the word2vec model
can be trained on a much larger dataset, so that its final
performance is better than those of the complex ones.

Our word2vec model is based on the “Continuous Bag-
Of-Words” (CBOW) architecture [8]. Its training criterion
is to correctly classify a word wt based on N surrounding
words wt+k where k ∈ {−N/2, · · · ,−1, 1, · · · , N/2} (i.e.,
N/2 previous and N/2 future words). Here, wt (or wt+k) is
represented as a V -dimensional one-hot vector where V is
the vocabulary size, and only the dimension corresponding to
wt (or wt+k) takes one and all the others zero. The input
layer consists of one-hot vectors for wt+ks. The hidden layer
projects these vectors into D-dimensional vectors using a
common V ×D projection matrix W , and takes their average
vector as the overall intermediate representation. It should be
noted that, assuming wt+k is the ith word in the vocabulary
(i.e., the ith dimension of its one-hot vector is one), the
projection of wt+k picks up the ith row in W . Hence, once
W is optimised, each row will be the vector representation
of a word. After the hidden layer, the overall intermediate
representation for wt+k is projected back into a V -dimensional
vector using a D×V matrix W ′ with softmax normalization.
This vector is a probabilistic estimation of wt, and training our
word2vec model is equivalent to optimising W and W ′ that
yield the most accurate estimation for words in the vocabulary.

In our implementation, we build a word2vec model using
“Gensim”, a Python library for text analysis on large-scale
corpora [9]. The model is trained using the English Wikipedia
corpus with a vocabulary of size V = 1, 449, 029, including
single words and word pairs (bi-grams) that appear more than



10 times in the corpus (word pairs are treated in the same
way as single words). Our preliminary experiment showed that
this setting leads to more meaningful vector representations
than only considering single words. Our model is trained on
D = 200-dimensional vector representations of words based
on N = 10 surrounding words. For each word in a topic, our
word2vec model is used to select 50 most related concepts,
among which a few really meaningful concepts are chosen
manually.

B. CNN Feature extraction

In general, it is not reasonable to learn a deep neural
network from scratch for concept detection in videos, because
of the huge computational cost to train it using a large
amount of data. Pre-trained networks, such as AlexNet [10],
ResNet [3] and GoogLeNet [11], are usually transferred to a
classifier suitable for a target problem. In this study, we use
ResNet implemented in Chainer [5] framework for the feature
extraction. We focus on a phenomenon where lower layers in
a deep neural network characterize visual features that can be
used universally for various images or videos. Based on this,
we use a layers of ResNet101 as feature extractor.

We take the output of the second last layer in ResNet101
as a feature vector. We use different pooling approaches
to obtain feature vectors with varied dimensionalities, and
aim to compare their effect on detection accuracies. In
kobe nict siegen D M 1 and kobe nict siegen D M 2, we
change the fully averaged pooling to partly averaged pooling
and obtain the feature of 3 × 3 × 2048 dimensions. As
for kobe nict siegen D M 3, we retain the original fully
averaged pooling layer, and take the 2048 dimensional feature.
In kobe nict siegen D M 2, we combine a feature extracted
by a motion CNN with the one by ResNet, in order to find out
whether their combination affects the recognition accuracy or
not. According to the following experiments, we found that
kobe nict siegen D M 1 has achieved a better performance
in this task. This feature extraction is applied to images in the
ImageNet dataset and videos in the TRECVID dataset.

C. Motion Feature Extraction

In order to extract motion features in videos, we develop a
novel method which applies traditional competitive learning
to a conventional CNN. Previous DNN studies on motion
analyse largely used two-stream convolutional networks [13]
which employ dense optical flow [14] for motion feature
extraction. Optical flow is obviously a hand engineered feature,
and does not use the most important characteristic of DNN,
representation learning, which automatically obtains optimal
features through the learning process. Another choice for
motion analysis is C3D [15]. It enables end-to-end motion
analysis by DNN, and performs representation learning of
motion features. However, it basically uses 3 × 3 filters,
and the resolution, especially the spatial resolution, is not
enough for some complex movies. A filter of conventional
CNN only has spatial dimensions, but a motion filter has an
additional temporal dimension. The increase in the dimension

drastically expands the degree of freedom of the filter and
makes it difficult to learn parameters. To address this problem,
we introduce biologically-inspired motion thresholding and
competitive learning into a CNN.

Competitive learning is a traditional learning method for
NNs [16]. It exhibits quite strong representation learning, and
is applied for Neocognitron which is an archetype of CNN
[17], and also self organizing maps (SOMs) [18]. The learning
process is based on winner takes all (WTA) dynamics: only
the winner neuron which has the maximum output value is
updated by Hebb rule. In this study, we unified competitive
learning with back propagation (BP) learning of CNN and
tried to extract motion features of videos. Firstly, competitive
learning is used as pre-training to obtain primitive motion
features. Then, subsequent BP learning performs fine tuning
with a discrimination task.

Fig. 3 shows the structure of the motion CNN which pro-
cesses motion information. The structure is based on AlexNet
[19], and performs additional competitive learning in the first
layer.

Fig. 3. The network structure of the motion CNN. It is fundamentally identical
to AlexNet [19], but performs motion thresholding and competitive learning.

The input frame is firstly converted to grayscale, and the
edges extracted by Laplacian filter. Then, three temporally
consecutive frames are used as input for the motion CNN.

The information flow of static and motion images are seg-
regated in the biological visual processing system [20]. With
this idea, our network also separates the motion information
from the static one by thresholding the temporal difference
of the images. For each receptive field (RF), we calculate
the spatial average of the difference between two temporally
consecutive frames. The RF outputs a value only when the
difference exceeds the threshold. Otherwise, the output is zero.
We determined the threshold θ as 1.2 empirically.

The parameter optimization is performed with conventional
stochastic gradient descent (SGD). In competitive learning, the
gradient is calculated by feedforward information, and weights
are updated with SGD. We use IACC.1.A-C as the training
dataset. The mini-batch size is 100, and 5,000 iterations are
applied. Fig. 4 represents motion filters obtained by competi-
tive learning. If we don’t use any threshold (θ = 0.0), almost
all filters end up processing static information (Fig. 4)(a).
If we set appropriate threshold (θ = 1.2), the network can
effectively obtain motion filters (Fig. 4)(b). In the subsequent
BP learning for the fine-tuning, the gradient is calculated from



the backward information, and weights are updated with SGD.
We use UCF-101 [21] as the training dataset. Fig. 5 shows
error rates and losses during fine-tuning. When the iteration
reaches around 20,000, the loss decrease tends to be stabilize.

After the fine-tuning, we use the output of fc6 layer which
is a vector with 4,096 dimensions as the a motion feature.
We combine it with the output of ResNet for the static image,
resulting a vector with 22,528 dimensions as the extracted
motion features.

(a)

(b)

Fig. 4. Motion filters in the first layer of motion CNN obtained by the
competitive learning. Three colors represents temporally consecutive three
frames: the first, second and third frames correspond to red, blue and green,
respectively. (a) No thresholding (θ = 0.0) results in almost all filters being
static. (b) Appropriate threshold (θ = 1.2) produce only motion filters.

D. Micro Neural Networks structure

In our study, microNN is a binary classifier that outputs two
values depending on the presence or absence of the concept.
Each microNN consists of the input, hidden and output layers,
which are fully-connected and contain 3 × 3 × 2048, 32
and 2 nodes in kobe nict siegen D M 1, 2048, 32 and 2

Fig. 5. Error rates and losses of BP learning as the fine tuning for the UCF-
101 motion discrimination task.

nodes in kobe nict siegen D M 3, 22528, 32, and 2 nodes
in kobe nict siegen D M 2 respectively. A microNN is con-
structed for each concept based on features extracted by
ResNet.

This small-scale structure allows the microNN to be ef-
ficiently trained. During learning, we apply Dropout [22]
to improve learning by ignoring randomly selected nodes.
Dropout can avoid overfitting by reducing the degrees of
freedom, thus raising the generalization performance.

E. Learning MicroNNs

Under the settings described above, we gradually perform
transfer learning for each concept using the following two
steps:

(i) We train a microNN using images from the ImageNet
dataset.

(ii) We refine the microNN using videos from the TRECVID
dataset from the weight parameters learned in the first
step as initial values.

If the annotation of the concept is available only in the
image dataset (ImageNet) or the video dataset (TRECVID), the
microNN is trained using only that dataset. In general, CNN
learning is strongly affected by the initial values. Especially
in the case of insufficient training data, it is important to
obtain suitable initial values to prevent overfitting. Therefore,
compared to training a microNN from scratch, we often obtain
better results using parameters that have been optimized on
images as initial values. In addition, only a few minutes are
required to learn a microNN for a concept.

F. Shot Retrieval based on Selected Concepts

We assume that the concepts related to a given query are
selected based on Fig. 1. In order to balance the output values
produced by microNNs for different concepts, we normalize
the output values for each concept so that the maximum and



minimum are 1 and -1 respectively. Through the last year’s
experiments, we found that combining the output values of
microNNs for different concepts by summation has better
performance than multiplication. That’s because summation is
more tolerant to errors in concept detection. So, for each shot,
we calculate the sum of the output values of the microNNs for
the selected concepts to use as the overall score representing
the appropriateness of the shot for the query.

III. EVALUATION EXPERIMENT RESULTS

Fig. 6 shows retrieval results for kobe nict siegen D M 1,
kobe nict siegen D M 2 and kobe nict siegen D M 3.
Each row shows the results for query 532 by displaying key
frames of shots ranked in first, second, third, 50th, 100th,
500th and 1000th positions. Each key frame is selected as
the middle frame in a shot. Given the query description “one
or more people driving snowmobiles in the snow” over those
seven positions, run1 matched 3 shots, which are the first, the
third and the five hundredth, the run2 also matched 3 shots
which are the second, the fiftieth and the hundredth, while
run3 only matched the third one.

Fig. 6. An illustration of retrieved results of kobe nict siegen D M 1,
kobe nict siegen D M 2 and kobe nict siegen D M 3.

We demonstrate the efficiency of microNNs
for the AVS task using IACC.3. Fig. 7 shows a
performance comparison between kobe nict siegen D M 1,
kobe nict siegen D M 2 and kobe nict siegen D M 3
on each of the 30 queries. The blue, orange and
gray lines represent the Average Precisions (APs) of
kobe nict siegen D M 1, kobe nict siegen D M 2, and
kobe nict siegen D M 3 respectively. This figure indicates
that, for most of the queries, using features extracted by
ResNet with partly averaged pooling layer leads to a higher
APs than those with fully averaged pooling layer. This result
can also be seen in Fig. 6, where run1 has more shots
matching the query description.

Fig. 8 presents a comparison between our methods and other
methods developed for the manually-assisted category in the
AVS task. Fig. 9 shows a comparison between our methods
and all other methods developed for the AVS task. In both
figures, the Mean average precision (MAP) of each method is
represented by a bar. The MAPs of our methods are in orange.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have introduced our AVS methods that use
microNNs to detect concepts related to a query. A microNN

Fig. 7. Perfomance comparison among our methods.

Fig. 8. Perfomance comparison between our and other methods developed
for the manually-assisted category in AVS task. The orange bars indicate our
three submitted results.

has a simple small-scale structure compared to ResNet, so
it can be efficiently trained for a large number of concepts
required for the AVS task. Based on transfer learning, a
microNN can be trained efficiently. In addition, it can be
incrementally refined using different training data. For exam-
ple, the microNNs in this paper are first trained using the
ImageNet dataset, and are then refined using the TRECVID
video dataset. Although we manually extract concepts from
each query, automatic selection is expected to be not difficult
because the rule used in manual selection is very simple.

Our current concept detection method works as an object
recognizer to classify an object located in the center of an input
image. We aim to extend this to a scene recognizer by consid-
ering correspondences of object and scene across the entire im-
age. This will allow us to acquire more accurate understanding
of an image by combining the object and scene recognizers.
In addition, concepts selected from queries are mostly nouns,
there is plenty of room to improve the treatment of verbs.
We hope to find an appropriate database and a more effective
method to process verbs. Since kobe nict siegen D M 1 us-

Fig. 9. Perfomance comparison between our method and all the other methods
developed in AVS task. The orange bars indicate the MAPs of our three
submitted results.



ing feature vectors with 3 × 3 × 2048 dimensions achieves
better results, but at a relatively higher computational cost
than kobe nict siegen D M 3. We plan to leverage PCA to
compress the vector dimensions while maintaining a decent re-
sult. Moreover, we also consider applying multiple knowledge
sources to further imporve the accuracy.
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