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Abstract 

KU-ISPL system for TRECVID 2017 Video to Text (VTT) is presented in this paper. The main 
method of the system is a stacked LSTM model for sentence generation. Input descriptors of the 
system consist of various deep learning-based features and multi-object detection results to obtain 
diversity of characteristics and key information from videos. We choose mid-level features of VGGnet 
and SoundNet as major features to capture multimodality about image and acoustic. Additionally, the 
visual attribution about objects and places is used for high-level feature. Finally, visual syntax 
detection is fine-tuned by sigmoid loss function for finding key words. We make 4 runs for the stacked 
LSTM model by combining various types of features to see how the information impacts the 
performance of sentence generation. Word2Vec is adopted for effective encoding of sentences. The 
embedded words by Word2Vec are used at state value and target of the LSTM. On the other side, the 
sentence matching method is based on the fusion score of Meteor, Bleu and the detection. The output 
of detection represents the probability that a word exists. Because the TRECVID VTT task is open 
domain, the sentence generation and sentence matching system is trained by various database such as 
MSVD, MPII-MD, MVAD, MSR-VTT, and TRECVID-VTT 2016.  
 

Methods 

1. System overview 

We investigate various methods to participate in the TRECVID 2017[16] Video to Text (VTT) 

task [1], and through various experiments it is determined that applying sequential RNN based 

method is most efficient to the system. The overall system architecture for the sentence generation 

is shown in Figure 1. The main approach of the system is the Sequence-to-Sequence model [2] for 

sentence generation as shown in Figure 2.  We aim at improving the training data instead of 

model improvement for more precise sentence generation. We use CNN feature with object 

detection [3] and SoundNet [4] result for this purpose. Additionally, the visual attribution about 

objects and places are used for high-level feature. Finally, the probability of key word occurrence 

is used by visual syntax detection which is fine-tuned with sigmoid loss function for multi-class 

detection. The corpus of database is represented using Word2Vec method [5]. These embedded 

words by Word2Vec are used at the state value and target of the LSTM. Through a combination of 

these methods, we construct four sentence generation runs and subsequently proceed our primary 

run by self - evaluation using Meteor [6] and Bleu [7]. 
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2.3 Object detection 

We decided to use object detection [3] to highlight keywords. Keywords mean dictionary from 

corpus of each training videos. While all the words used in training are in the corpus, there are 

cases where it is difficult to ascertain whether the corpus correctly express the training videos. Our 

idea is motivated by the fact that detection results can represent each image’s keywords. For 

example, if detection results include male and dog, we can envision “petting” or “hunting” 

activities with these keywords. If an appropriate verb can be found in the dictionary, we think it 

would affect the weight during training. Objects Detection results are generated and used for 

training together with size n/20 frame * 100 (number of classes). The dimension of object 

detection results is 100. 

2.4 Place detection 

Powerful visual features can be obtained with CNN models and they are robust on diverse visual 

tasks such as scene recognition. The proposed system employs Places205-AlexNet (AN) model 

[10]. The model contains 5 convolutional layers and 3 fully-connected layers. The convolutional 

filters have various sizes from 3x3 to 11x11. The output layers represent the probabilities of 205 

different places. 

2.5 Visual syntax detection 

The results of object detection and place detection cannot cover all words in training sentences. 

Hence, our system includes self-trained visual syntax detection. First, Syntaxnet [11] in 

Tensorflow-models is used for analysis of sentences. Therefore, the words are classified according 

to the part of speech tags and pick out what happens frequently in noun and verb. Next, VGGnet is 

fine-tuned for these words by sigmoid loss function because it is a multi-class problem. The 

number of trained words is 649. 

3. Sequential LSTM model 

3.1 Sequence to Sequence model 

As shown in Figure 2, while first stage encodes input sequence to a fixed length vector using one 
LSTM, and 2nd stage uses another LSTM to map the vector to a sequence of outputs. We can use 
one sequential LSTM (thicker gray) for both the encoding and decoding stage. This means that we 
can share parameters on encoding and decoding stage. This model uses a stack of two LSTMs with 
700 hidden units each. We also apply drop-out layers to this model to prevent overfitting. 
Basically it has same structure of S2VT model [2] except drop-out layers and putting embedded 
words if Word2Vec is used.  
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Table 1. Statistics about 5 dataset in our task. 

 MSVD MPII-MD MVAD MSR-VTT 
TRECVID-

VTT 2016 

# video 1,564 68,374 4,951 6,074 1,875 

# description 67,139 68,374 4,951 121,021 3,724 

# avg description 40 1 1 20 2 

# vocab 12,316 22,221 10,984 22,451 2,487 

4.2 Word2Vec 

The word or sentence-based task with uncountable corpora represented as one-hot vectors is 

too complex to deal with due to length of the vectors. Word2vec can alleviate the problem. 

Word2vec embeds words to a lower dimensional space. Moreover, semantically similar words 

are embedded nearby, so it contributes to high-quality word representations. The proposed 

system employs Inspect_Word2Vec model from Google [15]. It was trained on almost 100 

billion words from a Google news dataset and contains exactly 3 million words in dictionary. 

Each word is mapped as 300-dimensional feature. In addition, six key words (“a”, “and”, “the”, 

“of, “also”, “should”) are used as stop words and excluded from the dictionary. Additional 6 

zeros are suffixed at the end of preexisting words, and the above six words represented as 

concatenating 300 zero values with 6-dimensional one-hot vectors. Finally, each word is 

represented as 306-dimensional vectors. 

 

4.3 Sentence Generation Run 

Our goal is to improve the performance of sentence generation through a combination of various 

features.  For this goal, we organized four runs through training for some combinations. We tried 

a combination as shown in Table2. Run2 is the result using only the CNN mid-level features to 

compare the results with each run. We make runs with a combination of CNN mid-level feature 

and object detection, all features, all features and using word2vec.representation. 

 

Table 2. Combined method for each run. 

 VGGNet 
mid-feat 

Object 
Detection 

SoundNet 
mid-feat 

Place 
Detection 

Visual 
Syntax 

Word2vec

Run1 O O X X X X 

Run2 O X X X X X 

Run3 O O O O O X 

Run4 O O O O O O 
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