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Abstract

In this paper, we describe the systems developed for Video-to-Text (VTT), Ad-hoc Video Search
(AVS) and Video Hyper-linking (LNK) tasks at TRECVID 2017 [1] and the achieved results.

Video-to-Text Description (VTT): We participate in the TRECVID 2017 pilot Task of Video-to-Text
Description, which consist of two subtasks, .i.e, Matching and Ranking, and Description Generation.
Matching and Ranking task : To compare the effectiveness of spatial and temporal attentions, we experi-
ment:

- No attention model: Each video is represented by average pooling over both the spatial and temporal
dimensions of the ResNet-152 features extracted from frames and text description is encoded by
LSTM. Then we learn an embedding space to minimize the distance between the corresponding
video and text description in the format of triple loss. Furthermore, C3D is utilized to extract the
motion features of videos. Similarity scores from two kinds of features are averagely fused for the
final ranking.

- Spatial attention model: Average pooling is only used in the temporal dimension and the spatial
dimension is kept. Then we train attention model on the spatial feature map of video to compute
the similarity score, which is used for final ranking.

- Temporal attention model: Different from the spatial attention model, we train attention model on
frame-level, and perform average pooling over the spatial dimension.

- No-spatial-temporal attention model: similarity scores from the above three models are averagely
fused for the final ranking.

Description Generation task : We adopt the similar approach as the matching and ranking task and the
difference is that LSTM is used to generate the sentence word by word. More details about the model
can be seen in [2, 3]. Our submission can be summarized as:

- No attention model: Each video is represented by average pooling over both the spatial and temporal
dimension of the ResNet-152 features extracted from frames and LSTM is used to generate the
sentence word-by-word. Furthermore, we concatenate the features of ResNet-152 and C3D to feed
into the LSTM to generate descriptions for videos.



- Spatial attention model: For video features, average pooling is only used in temporal dimension
and the spatial dimension is kept. Then we train attention model to access different feature when
generating different words in the sentence.

- Temporal attention model: For video features, this model does the average pooling over the spatial
dimension, and learn attention model over the temporal dimension.

Ad-Hoc Video Search (AVS) We merged three search systems for AVS. One is our concept-based,
zero-example video search system which has been proved useful in previous years [4], one is a video
captioning system which is individually trained in VTT task, the other is a text-based search system
which computes similarities between query and videos using the metadata extracted from the videos. In
this study, we intend to find whether the combination of the concept-based system, captioning system
and text-based search system would do any help to improve search performance. We submit 5 fully
automatic runs and 3 manually-assisted runs. Our runs are listed as follows:

- F_D_VIREO.17_1 : An automatic run with infAP=0.093 uses concept-based video search system
only. The number of concepts in the concept bank is about 15K, which includes a collection of
concepts from ImageNet Shuffle [5], FCVID [6], Sports-1M [7], SIN [8], Places and Research Set
[9, 10]. Most of the concept detectors are trained or fine-tuned with ResNet-50 [11].

- F_D_VIREO.17_2 : An automatic run combines the results of F_D_VIREO.17_1 and the video
captioning system. In the captioning system, both ResNet and C3D features are used. The ratio
between ResNet, C3D and concept results in the weight fusion is 2:1:3. The performance stays at
infAP=0.120.

- F_D_VIREO.17_3 : The results of concept-based system and the video captioning system are
combined with the same approach in F_D_VIREO.17_2 but the weight fusion is the average of
ResNet, C3D and concept results. This run gets infAP=0.116.

- F_D_VIREO.17_4 : The results of F_D_VIREO.17_3 and the text-based search system are com-
bined in this run. The meta-data, the on-screen text and the speech are extracted from the videos
and fed into Lucene to build the text-based search system. The ratio between F_D_VIREO.17_3
and text-based search results in the weight fusion is 10:1. The performance stays at infAP=0.116.

- M_D_VIREO.17_1 : This manual run is based on F_D_VIREO.17_1 using concept-based video
search system. Human efforts are involved in two steps. (1) A user corrects the mistakes in queries
after automatic NLP parsing. (2) Automatically proposed semantic concepts are screened by the
user by deleting the unrelated, non-discriminative concepts. The run gets infAP=0.124.

- M_D_VIREO.17_2 : In this run, the result of M_D_VIREO.17_1 has been fused with the result
of the captioning system used in F_D_VIREO.17_2. The ratio between ResNet, C3D and concept
results in the weight fusion is manually selected based on user’s experiences. The run ends up with
infAP=0.164.

- M_D_VIREO.17_3 : This run is an auto run which combines of the result from F_D_VIREO.17_2
with the result of the text-based search system in F_D_VIREO.17_4. The ratio of the weight
fusion between F_D_VIREO.17_2 and text-based search results is 10:1. This run achieves the
best performance among our automatic runs with infAP=0.120.

- M_D_VIREO.17_4 : This run gets the best performance among manual runs submitted with
infAP = 0.164. In the run, the results of M_D_VIREO.17_2 and the text-based search system
are combined with the ratio of 10:x in the weight fusion, where x is defined by analyzing the
popularity of query terms using Google Books Ngram.



Video Hyperlinking (LNK): We introduce two novelties: (a) development of new semantic repre-
sentation network (SRN) for evaluation of cross-modal similarities; (b) re-ranking of search result by
considering data risk based on the statistical properties of hubness, local intrinsic dimension (LID) and
diversity [12].

- Run-1 : Visual baseline. The visual run relies on large concept banks including more than 14K
of concept classifiers [13]. The relatedness between anchors and targets is evaluated based on the
average fusion of SRN and cosine similarity.

- Run-2 : Rerun of Run-1 using the LID-first algorithm proposed in [12]. The goal is to promote the
ranks of targets with “lower data risk”, specifically, in lower local dimension, being hubs of data,
and sufficiently diverse from neighboring region.

- Run-3 : Multimodal baseline. This run combines visual Run-1 and the text features extracted from
ASR. Using SRN, we evaluate four different kinds of similarities between anchors and targets: visual-
visual, visual-text, text-visual and text-text. These similarities are averagely fused to quantify the
relatedness between anchor and targets. Finally, we further fuse the three kinds of relatedness: SRN,
visual cosine similarity, textual cosine similarity with the weights of 0.5, 0.3 and 0.2 respectively.

- Run-4 : Rerun of Run-3 using the LID-first algorithm proposed in [12].

1 Video-to-Text Description (VTT)

The TRECVID 2017 pilot Task of Video-to-Text Description is challenging since it involves detailed
understanding of the video content including many concepts, such as objects, actions, scenes, person-
object relations, temporal order of events and so on. Moreover, the inter-modality correspondence between
video content and natural language sentences is also nontrivial for this task.

In this task, a set of 1,880 Vine videos are randomly selected from more than 50,000 Twitter Vine
videos. Each video has a duration of around 6 seconds and is annotated multiple times by different
annotators. When describing each video, annotators are asked to write a sentence include, if appropriate
and applicable, four facets of the video, .i.e, who, what, where and when.

1.1 Matching and Ranking

1.1.1 Task Description

In this subtask, participants are asked to rank a set of text descriptions in terms of relevance to a
given video. Different from that of last year, the matching and ranking subtask of this year split the
whole video set into four testing subsets (2, 3, 4, 5) of varying size , in order to measure the impact of
the set size on the performance. Concretely, subset 2 includes 1,613 videos, subset 3 includes 795 videos,
subset 4 includes 388 videos, and subset 5 includes 159 videos. For subset 2, participants are asked to
rank two independent description sets: A and B. Subset 3 has three description sets: A, B, ,and C. Subset
4 has four description sets: A, B, C ,and D. Subset 5 has five description sets: A, B, C , D, and E.

1.1.2 Approach

For this task, we adopt spatio-temporal attention network (STN) to directly learn the inter-modality
correspondence without explicit concept detectors. Specifically, the STN model is designed to select the
most salient parts of the video in both spatial and temporal dimensions for inter-modality matching to
improve the accuracy.



Video Embedding Features: To better represent the video content, we adopt two kinds of visual
features for each video: ResNet-152 [14] features, which can extract the object information from video
frames, and C3D features [15], which can extract motion information from video clip (consecutive 16
frames). The input visual feature is denoted as fI , consisting of parts fi. Each part fi is embeded into
a new space as follows:

vI = tanh(WIfI + bI) (1)

where vI ∈ Rd×m is the transformed feature matrix, with d as the dimension of embedding space and m
as the number of grids or frames. WI is the transformation matrix and bI is the bias term.
Text Description Embedding Features: To represent the text description, we adopt LSTM [16], a
special form of RNN, to encode the whole sentence into one fixed-length vector. Supposing we have a
caption S = {s1, s2, ..., sL}, st ∈ V, where V is the vocabulary, L is the caption length. First, each word
of the caption S can be represented as a sequence of word vector S = {x1,x2, ...,xL}. Then we input
the sequence of word vector to a LSTM layer one by one. For timestep t, xt and ht are the input and
output vector respectively, T are input weights matrices, R are recurrent weight matrices and b are bias
vectors. Logic sigmoid σ(x) = 1

1+e−x and hyperbolic tangent φ(x) = ex−e−x

ex+e−x are element-wise non-linear
activation functions, mapping real values to (0, 1) and (−1, 1) separately. The dot product and sum of
two vectors are denoted with � and +© respectively. Given inputs xt, ht−1 and ct−1, the LSTM unit
updates for timestep t are:

gt = φ(Tgxt +Rght−1 + bg) cell input

it = σ(Tixt +Riht−1 + bi) input gate

ft = σ(Tfxt +Rfht−1 + bf ) forgetgate

ct = gt � it + ct−1 � ft cell state

ot = σ(Toxt +Roht−1 + bo) output gate

ht = φ(ct)� ot cell output

After feeding the whole sentence into LSTM, we use the output of last step hL as the representation of
the caption, i.e., vT = hL.
Spatio-Temporal Attention (STA): The attention layer is to find the most relevant part from the
video to the text description. Given the video representations vI and the caption representation vT, the
attention mechanism is formulated as:

hA = tanh(WI,AvI �WT,AvT + bA)

pI = softmax(WPhA + bP )

ṽI =

m∑
i=1

pivi

where WI,A,WT,A are the transformation matrix for video and caption, respectively. pI denotes the
attention weights for different parts of the video, which represent the relevance of the part to the text
description. Therefore, ṽI is the aggregated representation for the video content, which is modulated by
the text description.
Objective Function: To this end, the similarity between video and text description is computed as
follow:

u =WI ṽI �WTvT + b

S < vI ,vT >= tanh(Wu,su+ bs)



where Wu,s ∈ Rd and bs ∈ R is bias. S < vI ,vT > represents the similarity score between video content
and text description, which can be used to rank the set of text descriptions. The model is optimized by
minimizing the following rank-based loss function with margin as the loss function:

L(W,Dtrn) =
∑

(vI ,v
+
T ,v−

T )∈Dtrn

max(0, δ + S < vI ,v
−
T > −S < vI ,v

+
T >) (2)

The training set, Dtrn, consists of triples in the form of (vI ,v
+
T ,v

−
T ), where v+

R(v
−
R) is true (false) text

description for video vI . The matrix W represents the network parameters, and δ ∈ (0, 1) controls the
margin in training and is determined by cross validation.

1.1.3 Experiments and Submissions

Settings and Datasets: Here we detail the parameter setting of spatio-temporal attention network
(STA). The dimension of attention layer hA is set as 512 and the hyper parameter δ is set as 0.2 through
cross validation. STA is trained using stochastic gradient descent with momentum set as 0.9 and the
initial learning rate as 0.1. The size of mini-batch is 128 and the training stops after 30 epochs. To
prevent overfitting, dropout [17] is used. Since the provided training dataset by TRECVID is too small,
we also train our model on MSR-VTT [18].
Submissions: To compare the effectiveness of spatial and temporal attention, we submitted 4 runs listed
in the Abstract. For subset 2, we submit four runs of four models for description set A and B, respectively.
For each other subset, we only submit one run of no-spatial-temporal attention model.

1.1.4 Results Analysis

The testing subset 2 is composed of 1,613 videos and two description sets (A and B, each composed
of 1,613 sentences). The evaluation metric is mean inverted rank. In addition to the submitted four
runs, we also calculate the performance of other settings, which make use of either only ResNet-152
features or only C3D features for above four models. Figure 1 shows the results of our runs on subset
2 and description sets A and B, respectively. From the figure, we can see that the ResNet-152 features
consistently outperform C3D features in no, spatial, and temporal attention mechanism. Since the
ResNet-152 is much deeper than C3D (152 v.s. 19), the ResNet-152 features are more powerful than
C3D features. Besides, the fusion of ResNet-152 and C3D features can further improve the performance.
It indicates that motion information (C3D) can be complementary to the static appearance (ResNet-
152) in video content understanding, which is due to the fact that the text descriptions include many
motion verbs, such as “dancing” or “running”. Another observation from Figure 1 is that although the
performance of spatial/temporal attention models is lower than no attention model, the fusion of no,
spatial, and temporal attention models can boost the final performance. This shows that the attention
mechanism can improve the matching performance by putting more weights on the most relevant parts
of the video. Figure 2 presents the performance of different subsets of varying size. We can see that when
the size of description set reduces, the mean inverted rank will increase. This is reasonable because fewer
caption candidates means the bigger possibility of finding the correct correspondence between video and
description.



Figure 1: Mean inverted rank of no, spatial and temporal attention models.

1.2 Description Generation

1.2.1 Task Description and Submissions

In this subtask, participants were asked to generate a sentence to describe a specific test video,
without taking into consideration the existence of the sentence sets in the matching and ranking subtask.
This subtask includes 1,880 videos and we first train our model on MSR-VTT dataset and then make
predictions on the given videos. Our submissions have been listed in the Abstract.

1.2.2 Results Analysis

Figure 3 presents the performance of our submissions on three evaluation metrics: meteor, BLEU and
STS (Semantic Similarity). From the metrics of meteor and STS, we can see that both the spatial and
temporal attention mechanism can clearly improve the quality of generated sentences. And in no attention
model, the combination of C3D features and ResNet-152 features can further improve the performance.
It suggests that both the motion information and the static appearance are important when generating
the description for the video.
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Figure 3: Meteor, BLEU, and STS of no, spatial and temporal attention models on description generation.

1.3 Summary

In the video-to-text description task, we have tried the spatial and temporal attention network for
both the matching and ranking subtask and description generation subtask. We also use different features,
i.e., ResNet-152 and C3D, to represent different aspects of the video content. From the results, we can
conclude that the object information from the ResNet-152 features and the motion information from C3D
features are complementary and can be combined to boost the performance. Another conclusion is that
the spatial/temporal attention mechanism can help improve the performance for both the matching and
generation subtasks. In the future, we are targeting at investigating how to combine different features
(ResNet-152 and C3D) into one framework of the spatial-temporal attention network. In addition, we
will also consider other modalities for the task, like audio information.



2 Ad-Hoc Video Search (AVS)

2.1 Results Analysis

Our experimental results show that (1) the concept-based search system still stands for the best
individual run; (2) the combination of concepts and captions effectively improves the performance by
about 30% compared to concept-only search system; (3) the metadata has little help in improving the
performance in AVS task 2017.

Type Method Abbv. Mean xInfAP
Auto Visual concepts only Concepts 0.093
Auto Visual concepts + Captions Concepts+Captions 0.120
Auto Visual concepts + Captions + Metadata Concepts+Captions+Metadata 0.120
Manual Visual concepts only Concepts 0.124
Manual Visual concepts + Captions Concepts+Captions 0.164
Manual Visual concepts + Captions + Metadata Concepts+Captions+Metadata 0.164

Table 1: The performance of official runs on TRECVID 2017 AVS task
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Table 2 presents the mean xInfAP for the official runs on TRECVID 2017 AVS task. For the auto runs,
we can see that only using visual concepts already gets a good enough performance. And combining the
concepts with captioning (simply average fusion) can boost the mean xInfAP to 0.12, which is nearly 30%
performance gain. This indicates that the captioning system is complementary to the visual concepts,
which only consider the concepts in the video and dismiss the relationship between these concepts.
Another observation for the auto runs is that the metadata has little help on improving the performance.
A possible reason is that no named-entities are mentioned for this year AVS queries.

Figure 4 presents the performance comparison between the auto and manual runs. For the concept-
based searching system, the manual run is done by manually selecting the good concepts from the
generated visual concepts. The performance gain indicates that the manual selection of visual concepts
can help filter the noisy visual concepts and then lead to the improvement on the searching results. For
the combination of concepts and captioning, the manual process is to manually assign fusion weights to
three different components: concepts, captioning-ResNet152, captioning-C3D. This manual assignment
of fusion weights is based on our experience on the results of TRECVID 2016 AVS task. From the figure,
we can see that this manual process further boosts the mean xInfAP from 0.12 to 0.164, a more than 30%



performance gain. This again indicates that the concept-based system and the caption-based system are
very complementary. It is quite worth investigating in the future how to automatically assign adapted
fusion weights to these two systems.

2.2 Interactive Video Search

We also enhanced the video interactive search system [13] showcased in Video Browser Showdown
(VBS) [19] of MMM 2017. The system is enhanced in three main modules, including: a simplified color
sketch modal with recommendation system, a manual concept selection modal allows defining AND,
OR, NOT logical combination of concepts, and a new browsing interface with compact video frames
representation [20].

In VBS, the video retrieval tasks are divided into 3 sub-tasks: visual known-item search (visual KIS),
textual known-item search (textual KIS) and ad-hoc video search (AVS). In visual KIS, the participants
see a 20 seconds video segment and try to find the correct segment from the video corpus. In textual KIS,
a detailed-textual-description is given out and the participants try to find the described video segment.
Different from textual KIS, a general textual query is given out in AVS task, then the participants need
to find all the video segments described. At VBS 2018, there are 5 queries for each sub-tasks. Also, two
sessions are provided with one for evaluating the effectiveness of the tool using by expert users and the
other one for novice users.

Figure 5: The result of all sub-tasks in VBS 2018. The first row shows the tasks for expert users, the
second row shows the tasks for novice users. In each chart, the vertical axis shows the teams participated,
the horizontal axis shows the score achieved by each team scaled to 100.

In 2018, there are 9 teams participate in the VBS task. The detail results are shown in Figure 5.
Using the simplified color sketch modal, we take advantages in visual KIS tasks and finish as the top in



expert session and the second in novice session. As the winner in AVS tasks of VBS 2017, we also have
advantages with a large concepts bank which is filled with 13K concepts but we just finish at the second
rank from bottom up. This can be explained by the current scoring scheme of VBS which does not take
into account the number of members in each team i.e. the number of users engage in searching process.
In actually, VIREO team has one member joined the challenge meanwhile the other teams have more
than two members. In textual KIS tasks, we miss all the queries and stay behind the other teams. When
we review the textual KIS queries, we figure out that we are able to retrieve the correct video segments
of some queries in the returned rank list but we miss them because of using the master-shot key-frame
to represent the video segment which does not provide enough confident for judging.

Figure 6: The overall result of VBS 2018.

The overall result of VBS 2018 is shown in Figure 6. We finished at the 6th position over 9 teams.
We conclude that our proposed color-sketch modal is robust for visual KIS. Besides, our system has
some factors that needs to improve including: adapting the system for textual KIS queries, providing an
effective browsing interface for result browsing and video context understanding. These directions are
our interested topics for the coming VBS in 2019.

3 Video Hyperlinking (LNK)

3.1 Semantic Representation Network

Inspired by [21], SRN is a deep model proposed to assess the relatedness between visual and text
words, as depicted in 7. The model consists of two LSTM networks, which share weights with each other,
for inputs of anchors and targets respectively. The network encodes both target and anchor into the same
feature space, before further transforming them into holographic and softmax layers. The holographic
layer evaluates the relatedness between anchor and target using circular correlation [22], which directly
measures vector correlation in frequency domain using FFT (fast Fourier transform). Finally, the softmax
layers output the probabilities of similarity and dissimilarity between anchors and targets.

In our implementation, SRN is trained with LNK development set on top of the pre-trained model
in [22]. We feed four different kinds of inputs (visual-visual, visual-text, text-visual, text-text) for each
pair of anchor and target during training. The input dimension is set to be 50, i.e., top-50 text words
with the highest tf-idf scores and top-50 visual words with the highest probability scores. We zero-pad
the vectors if the number of words is less than the predefined dimension. The order of text words follow



the temporal sequence where they appear in ASR, and the order of visual words is based on their index
values. The learning is based on cross-entropy loss function.

Figure 7: The structure of the semantic representation network.

3.2 Data Risk

Different from retrieval task, LNK should minimize the risk of linking to false positives, non-representative
and redundant video fragments. We quantify the data risk using hubness, local intrinsic dimension (LID)
and diversity. Hubness measures the popularity of points based on reverse nearest neighbors, specifically,
the number of points that regards a point as its k-nearest neighbors. LID characterizes the intrinsic
dimension of a point in local context based on its neighborhood structure. In principle, a point with
high LID value refers to a “difficult” point that has a higher probability to be false than true positive.
Diversity is calculated as the average pairwise distance between a point and its k-nearest neighbors. Ba-
sically, the key idea here is to promote candidate targets with low LID, high hub and diversity to higher
rank. We formulate the problem as an optimization algorithm and adopt LID-first algorithm [12] for
reranking of baseline results. LID-first algorithm is shown to introduce consistent improvement based on
our experiment conducted on LNK development set [12].

3.3 Implementation Details

Due to the use of SRN and consideration of data risk in multi-modal setting, we discard the testing
samples without speech from experiment. In total, there are 2,719 videos being excluded. The visual
features are based on large concept banks used in AVS task [13]. The textual features are extracted from
ASR provided by LIMSI [23]. We use the technique similar to [24] for video fragmentation. Basically
LDA topic model is used to represent a paragraph, while logical regression is used to identify the fragment
boundaries. Meanwhile, same as [25], we ensure that the fragment boundaries will not happen in the
middle of a sentence.

3.4 Result

Multi-modality. Text words do not introduce improvement for P@5 and P@10, however, successfully
recall more true positives in other three measures P@20, MAP and MAiSP.
Data risk. Similarly, LID-first algorithm does not introduce improvement for P@5, but generally brings
larger improvement especially for multimodal run as observed in P@20 and MAP.



P@5 P@10 P@20 MAP MAiSP
Run-1 0.864 0.852 0.502 0.1848 0.1113
Run-2 0.864 0.860 0.530 0.1849 0.1128
Run-3 0.856 0.852 0.582 0.1951 0.1199
Run-4 0.856 0.852 0.710 0.2392 0.1473

Table 2: The performance of submitted runs on TRECVID 2017 LNK task
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