DL-61-86 at TRECVID 2017: Video-to-Text Description

Jianfeng Dong1,2, Shaoli Huang1, Duanqing Xu2, Dacheng Tao1

1. UBTECH Sydney AI Centre, SIT, FEIT, University of Sydney
2. College of Computer Science and Technology, Zhejiang University
Matching and Ranking subtask

Query Videos:

Candidate sentences to be ranked:
- a man speaks to audiences indoors
- a person skates indoors
- **Athletics make a choreography in gym.** ✓
- a woman is holding a phone to her ear.
Cross-media Similarity

Video

Sentence

Athletics make a choreography in gym.

Key question: how to compute cross-media similarity?
Our Model

Key components:
- Spatial Enhanced Video Representation
- Multi-scale Sentence Representation
Common way of video representation

Use RNN to capture spatio-temporal information.
Spatial Enhanced Video Representation

Learn a GRU with skip-connections that allow bypassing of the spatial features.
Multi-scale Sentence Representation

It merges bag-of-words, word2vec and GRU sentence features and letting the model figure out the optimal way for combining them.

Athletics make a choreography in gym.

Objective Function

Triplet Ranking Loss:

\[
l(x, q; \theta) = \sum_{q'} [\alpha + s(x, q') - s(x, q)]_+ \]

\[
[x]_+ \equiv \max(x, 0) \]

Improved Triplet Ranking Loss: (using hardest example)

\[
l(x, q; \theta) = \max_{q'} [\alpha + s(x, q') - s(x, q)]_+ \]
Other winning components

1. Use more training data and fine-tune the model on the data provided by TRECVID

2. Use pre-trained word2vec to initialize word embedding before the LSTM/GRU

3. Use batch normalization after the FC layer

4. Fuse different models
Datasets

Table 1. Overview of datasets used in our submission.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># Videos</th>
<th># Sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSVD</td>
<td>1,970</td>
<td>80,863</td>
</tr>
<tr>
<td>MSR-VTT</td>
<td>10,000</td>
<td>200,000</td>
</tr>
<tr>
<td>TGIF</td>
<td>101,980</td>
<td>125,672</td>
</tr>
<tr>
<td>Validation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tv2016train</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>Fine-Tune</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tv2016test</td>
<td>1,915</td>
<td>3,830</td>
</tr>
</tbody>
</table>

Datasets provided by TRECVID 2016

External datasets
Other winning components

1. Use more training data and fine-tune the model on the data provided by TRECVID

2. Use pre-trained word2vec to initialize word embedding before the LSTM/GRU

3. Use batch normalization after the FC layer

4. Fuse different models
Pre-trained word2vec

1. Word2vec trained on the Google news documents

2. Word2vec trained on the tags of Flickr images

Word2vec with the dimensionality of 500 trained on 30 million Flickr tags.

URL: https://drive.google.com/open?id=0B1OT7LFjhrF_RWptMjY2TVBqLWc

Other winning components

1. use more training data and fine-tune the model on the data provided by TRECVID

2. Use pre-trained word2vec to initialize word embedding before the LSTM/GRU

3. Use batch normalization after the FC layer

4. Fuse different models
Other winning components

1. Use more training data and fine-tune the model on the data provided by TRECVID

2. Use pre-trained word2vec to initialize word embedding before the LSTM/GRU

3. Use batch normalization after the FC layer

4. Fuse different models
Fuse with Word2VisualVec

Model fusion is simple but it is effective.

Improve Word2VisualVec:
1. Use multi-scale text representation to embed sentence
2. Use the improved triplet ranking loss

Evaluation Results

Our submissions lead the evaluation with a great margin.

(a) Results on the test set 2

(d) Results on the test set 5
Take-home Messages

- Use Spatial Enhanced Video Representation to embed videos
- Use Multi-scale Sentence Vectorization to embed sentences
- Some other winning components
 1. use more training data and fine-tune the model on the data provided by TRECVID
 2. Use pre-trained word2vec to initialize word embedding before the LSTM/GRU
 3. Use batch normalization after the FC layer
 4. Fuse different models