Query Understanding is Key for Zero-Example Video Search

Dennis Koelma and Cees Snoek
University of Amsterdam
The Netherlands
Pipeline

- Video Frames 2/sec
- ResNet ResNeXt ImageNet Shuffle
- Video Story term vector
- ResNet ResNeXt ImageNet Shuffle
- concept scores
- dot similarity 0Ex M2
- cosine similarity 0Ex M1
- Selected query terms
- Closest terms (word2vec) VS vocabulary
- Top N closest (word2vec) concepts

- window average flatten
- percentile filter softmax
22k ImageNet classes

- Use as many classes as possible
- Find a balance between level of abstraction of classes and number of images in a class

Example imbalance

296 classes with 1 image

Irrelevant classes

Gametophyte

Siderocyte
CNN training on selection out of 22k ImageNet classes

• Idea
 • Increase level of abstraction of classes
 • Incorporate classes with less than 200 samples

• Heuristics
 • Roll, Bind, Promote, Subsample

• Result
 • 12,988 classes
 • 13.6M images

Concept Bank

• Two networks
 • ResNet
 • ResNeXt

• Three datasets (subsets of ImageNet)
 • Roll Bind (3000) Promote (200) Subsample, 13k classes, training: 1000 images/class
 • Roll Bind (7000) Promote (1250) Subsample, 4k classes, training: 1706 images/class
 • Top 4000 classes, Breadth-first search >1200 images, training: 1324 images/class
Video Story: Embed the story of a video

Joint optimization of W and A to preserve

Descriptiveness: preserve video descriptions: $L(A,S)$

Predictability: recognize terms from video content: $L(S,W)$

Video Story Training Sets

• VideoStory46k - www.mediamill.nl
 • 45826 videos from YouTube based on 2013 MED research set terms
• FCVID: Fudan Columbia Video Dataset
 • 87609 videos
• EventNet
 • 88542 videos
• Merged (VideoStory46k, FCVID, EventNet)

• Video Story dictionary: Terms that occur more than 10 times in the dataset
 • Merged: 6440 terms
• Using vocabulary of stemmed terms that occur more than 100 times in Wikipedia dump
 • With stemming: Respect the Video Story dictionary
 • 267,836 terms
• Use word2vec to expand them per video
Query Terms

• Experiments show it is important to select the right terms
 • Instead of just taking the average of the terms in word2vec space

• Part-of-Speech tagging
 • <noun1> , <verb> , <noun2>
 • <subject> , <predicate> , <remainder>

• Query Plan
 A. Use nouns, verbs, and adjectives in <subject>
 • unless it concerns a person (noun1 = “person”, ”man”, “woman”, “child”, …)
 B. Use nouns in <remainder>
 • unless it concerns a person or noun is a setting (“indoors”, “outdoors”, …)
 C. Use <predicate>
 D. Use all nouns in sentence
 • Unless noun is a person or a setting
The Effect of Parsing on 2016 Topics

- MIAP using only ResNet feature
(Greedy) Oracle on 2016 Topics

- Fuse top (max 5) words/concepts with highest MIAP
- MIAP using only ResNet feature
Query Examples: The Good

• A person playing drums indoors

• VideoStory terms avg:
 - person
 - plai
 - drum
 - indoor

• VideoStory terms parse:
 - drum

• VideoStory terms oracle:
 - beat
 - drum
 - snare
 - vibe
 - bng

- Merged
- rbps13k

Bar chart showing the comparison between avg, parse, and oracle for merged and rbps13k datasets.
Query Examples : The Ambiguous

• A person playing **drums** indoors

• Concepts top5 avg :
 - guitarist, guitar player
 - outdoor game
 - drum, drumfish
 - sitar player
 - brake drum, drum

• Concepts top5 parse :
 - drum, drumfish
 - brake drum, drum
 - barrel, drum
 - snare drum, snare, side drum
 - drum, membranophone, tympan

Oracle :
 - percussionist
 - cymbal
 - drummer
 - drum, membranophone, tympan
 - snare drum, snare, side drum
Query Examples : The Bad

• A person sitting down with a laptop visible

• VideoStory terms avg :
 - person
 - sit
 - laptop

• VideoStory terms parse :
 - laptop

• VideoStory terms oracle :
 - monitor
 - aspir
 - acer
 - alienwar
 - vaio
 - asus
 - laptop (rank 7)
Query Examples: The Difficult

• A person wearing a **helmet**

• Concept top5 parse:
 - helmet (a protective headgear made of hard material to resist blows)
 - helmet (armor plate that protects the head)
 - pith hat, pith helmet, sun helmet, topee, topi
 - batting helmet
 - crash helmet

• Concept top5 oracle:
 - hockey skate
 - hockey stick
 - ice hockey, hockey, hockey game
 - field hockey, hockey
 - rink, skating rink

<table>
<thead>
<tr>
<th></th>
<th>Merged</th>
<th>rbps13k</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg</td>
<td>0.500</td>
<td>0.500</td>
</tr>
<tr>
<td>parse</td>
<td>0.000</td>
<td>0.100</td>
</tr>
<tr>
<td>oracle</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Query Examples: The Impossible

- A crowd demonstrating in a **city street** at night
 - Parsing “fails”
 - Average wouldn’t have helped

- **VS oracle:**
 - vega
 - squar
 - gang
 - times
 - occupi

- **Concept oracle:**
 - vigil light, vigil candle
 - motorcycle cop, motorcycle policeman, speed cop
 - rider
 - minibike, motorbike
 - freewheel
Results 5 Modalities x 2 Features

- **VideoStory**: ResNeXt is better than ResNet
- **Concepts**: ResNet is better than ResNeXt (overfit?)
- **VideoStory** is better than **Concepts**
Final Fusion

• Concept fusion is slightly better than VideoStory
• Often complementary, also big difference for many topics
• Top 2/4 for concepts is slightly better than top 3/5
Our AVS Submission

![Chart showing performance metrics for AVS submissions in 2016 and 2017 for Fusion top24, Fusion top35, VideoStory, and Concepts categories.](chart.png)
All Fully Automatic AVS Submissions
All Automatic and Interactive AVS Submissions
Conclusions

• Query parsing is important
• VideoStory and Concepts are good but will not “solve” AVS
Thank You