PKU_ICST at TRECVID 2017: Instance Search Task

Yuxin Peng, Xin Huang, Jinwei Qi, Junchao Zhang, Junjie Zhao, Mingkuan Yuan, Yunkan Zhuo, Jingze Chi, and Yuxin Yuan

Institute of Computer Science and Technology,
Peking University, Beijing 100871, China
{pengyuxin@pku.edu.cn}
Outline

- Introduction
- Our approach
- Results and conclusions
- Our related works
Introduction

- **Instance search (INS) task**
 - Provided: separate person and location examples
 - Topic: combination of a person and a location
 - Target: retrieve specific persons in specific locations

Query person (Ryan) + Query location (Cafe1) → Ryan in Cafe1
Outline

- Introduction
- Our approach
- Results and conclusions
- Our related works
Our approach

• **Overview**

Location-specific search

Find Phil in the Market

Query Location: Market
- AKM-based location search
- DNN-based location search
- Location similarity fusion

Query Person: Phil
- Face recognition
- Text-based person search
- Person similarity
- Search rank

Instance score fusion

Semi-supervised learning based re-ranking

Person-specific search

Fusion

Semi-supervised re-ranking
Our approach

- Overview

Location-specific search

Similarity computing stage

- AKM-based location search
- DNN-based location search
- Location similarity fusion

Result re-ranking stage

- Face recognition
- Text-based person search
- Person similarity
- Search rank

Instance score fusion

Semi-supervised learning based re-ranking
Our approach

- Location-specific search
 - Integrates *handcrafted* and *deep* features
 - Similarity score: $sim_{location} = w_1 \cdot AKM + w_2 \cdot DNN$
• **AKM-based location search**

 – Keypoint-based BoW features are applied to capture *local details*

 – Total 6 kinds of BoW features, which are combinations of 3 *detectors* and 2 *descriptors*

 – AKM algorithm is used to get *one-million* dimensional visual words

• Similarity score:

\[
AKM = \frac{1}{N} \sum_{k} BOW^{(k)}
\]
Location-specific search

- **DNN-based location search**
 - DNN features are used to capture *semantic information*
 - Ensemble of 3 CNN models

VGGNet

- 3x3 conv, 64
- 3x3 conv, 64
- 3x3 conv, 128
- 3x3 conv, 128
- 3x3 conv, 256
- 3x3 conv, 256
- 3x3 conv, 512
- 3x3 conv, 512
- 3x3 conv, 512
- pool/2
- pool/2
- fc 4096
- fc 4096
- fc 4096

GoogLeNet

ResNet

- 7x7 conv, 64/2
- maxpool2
- efgb1 blocks
- efgc1 blocks
- efgd1 blocks
- efgg1 blocks
- egh1 blocks
Location-specific search

- **DNN-based location search**
 - All 3 CNNs are trained with *progressive training* strategy
- **Progressive training**
Location-specific search

• DNN-based location search
 – All 3 CNNs are trained with *progressive training* strategy

• Progressive training
Location-specific search

• DNN-based location search
 – All 3 CNNs are trained with progressive training strategy

• Progressive training

Query examples

Training data

VGGNet

GoogLeNet

ResNet

Top ranked shots
Location-specific search

- DNN-based location search
 - All 3 CNNs are trained with *progressive training* strategy
- Progressive training

![Diagram showing the flow of data from query examples to top ranked shots through VGGNet, GoogLeNet, and ResNet with progressive training strategy.](image-url)
Our approach

• Overview

Location-specific search

Find Phil in the Market

Query Location: Market

AKM-based location search

DNN-based location search

Location similarity fusion

Person similarity

Search rank

Query Person: Phil

Face recognition

Text-based person search

Instance score fusion

Semi-supervised learning based re-ranking

Person-specific search

Similarity computing stage

Result re-ranking stage
Our approach

- Person-specific search

 - We apply *face recognition* technique based on deep model

 - We also conduct *text-based person search*, where persons’ auxiliary information is minded from the provided video transcripts
Person-specific search

- Face recognition based person search
 - Face detection
• **Face recognition based person search**

 – Face detection

 – *Remove “bad” faces* automatically: hard to distinguish

Before removal of bad faces:
Person-specific search

• Face recognition based person search
 – Face detection
 – Remove “bad” faces automatically: hard to distinguish

Before removal of bad faces:
Person-specific search

- Face recognition based person search
 - We use VGG-Face model to extract face features
 - We integrate *cosine similarity* and *SVM prediction* scores to get the person similarity scores.

\[
sim_{\text{person}} = w_1 \cdot \text{COS} + w_2 \cdot \text{SVM}
\]
Person-specific search

- **Face recognition based person search**
 - We use VGG-Face model to extract face features
 - We integrate *cosine similarity* and *SVM prediction* scores to get the person similarity scores.
 - We adopt similar progressive training strategy to finetune the VGG-Face model

\[
sim_{person} = w_1 \cdot \text{COS} + w_2 \cdot \text{SVM}
\]
Our approach

• Overview

Location-specific search

Find Phil in the Market

Query Location: Market
- AKM-based location search
- Location similarity fusion

Query Person: Phil
- Face recognition
- Person similarity

Instance score fusion

Fusion

Person-specific search

Similarity computing stage

Result re-ranking stage

Semi-supervised learning based re-ranking
Our approach

- **Instance score fusion**
 - Direction 1, we *search person in specific location*

 \[s_1 = \mu \cdot sim_{person} \]

 - \(\mu \) is a bonus parameter based on text-based person search
Our approach

- **Instance score fusion**
 - Direction 1, we *search person in specific location*

\[s_1 = \mu \cdot \text{sim}_{\text{person}} \]

- \(\mu \) is a bonus parameter based on text-based person search
Our approach

- **Instance score fusion**
 - Direction 1, we *search person in specific location*

\[s_1 = \mu \cdot \text{sim}_{\text{person}} \]

- \(\mu \) is a bonus parameter based on text-based person search

![Diagram showing the process of instance score fusion with visual elements representing search, candidate location shots, and fusion results.](image-url)
Our approach

• **Instance score fusion**

 – Direction 2, we *search location containing specific person*

\[
s_2 = \mu \cdot \text{sim}_{\text{location}}
\]

 – \(\mu\) is a bonus parameter based on text-based person search
Our approach

• **Instance score fusion**

 – Combine scores of above two directions:
 \[s_f = \omega \cdot (\alpha \cdot s_1 + \beta \cdot s_2) \]

 – \(\omega \) indicates whether the shot is *simultaneously* included in candidate location shots and candidate person shots
Our approach

• Overview

Location-specific search

Find Phil in the Market

Query Location: Market
- AKM-based location search
- DNN-based location search
- Location similarity fusion

Query Person: Phil
- Face recognition
- Text-based person search
- Person similarity
- Search rank

Instance score fusion

Semi-supervised learning based re-ranking

Person-specific search

Fusion

Semi-supervised re-ranking
Our approach

• Re-ranking

 – Most of the top ranked shots are correct and look similar
 – Noisy shots with large dissimilarity can be filtered using similarity scores among top ranked shots
 – A semi-supervised re-ranking method is proposed to refine the result
Re-ranking

- Semi-supervised re-ranking algorithm
 - Obtain affinity matrix W of top-ranked shots F:
 \[
 W_{ij} = \begin{cases}
 \frac{F_i^T \cdot F_j}{|F_i| \cdot |F_j|}, & i \neq j \\
 0, & i = j
 \end{cases}, \quad i, j = \{1, 2, \ldots, n\}
 \]
 - Update W according to k-NN graph:
 \[
 W_{ij} = \begin{cases}
 W_{ij}, & F_i \in KNN(F_j) \\
 0, & \text{otherwise}
 \end{cases}, \quad i, j = \{1, 2, \ldots, n\}
 \]
 - Construct the matrix:
 \[
 S = D^{-\frac{1}{2}} W D^{-\frac{1}{2}}
 \]
 - Re-rank search result:
 \[
 G_{t+1} = \alpha S G_t + (1 - \alpha) Y
 \]
 where Y is the ranked list obtained by above fusion step.
Outline

- Introduction
- Our approach
- Results and conclusions
- Our related works
Results and Conclusions

• Results

 – We submitted 7 runs, and ranked 1st in both automatic and interactive search

 – Interactive run is performed based on RUN2 with expanding positive examples as queries

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>MAP</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic</td>
<td>RUN1_A</td>
<td>0.448</td>
<td>AKM+DNN+Face</td>
</tr>
<tr>
<td></td>
<td>RUN1_E</td>
<td>0.471</td>
<td>AKM+DNN+Face</td>
</tr>
<tr>
<td></td>
<td>RUN2_A</td>
<td>0.531</td>
<td>RUN1+Text</td>
</tr>
<tr>
<td></td>
<td>RUN2_E</td>
<td>0.549</td>
<td>RUN1+Text</td>
</tr>
<tr>
<td></td>
<td>RUN3_A</td>
<td>0.528</td>
<td>RUN2+Re-rank</td>
</tr>
<tr>
<td></td>
<td>RUN3_E</td>
<td>0.549</td>
<td>RUN2+Re-rank</td>
</tr>
<tr>
<td>Interactive</td>
<td>RUN4</td>
<td>0.677</td>
<td>RUN2+Human feedback</td>
</tr>
</tbody>
</table>
Results and Conclusions

• Conclusions
 – Video examples are helpful for accuracy improvement
 – Automatic removal of “bad faces” is important
 – Fusion of location and person similarity is a key factor of the instance search

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>MAP</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic</td>
<td>RUN1_A</td>
<td>0.448</td>
<td>AKM+DNN+Face</td>
</tr>
<tr>
<td></td>
<td>RUN1_E</td>
<td>0.471</td>
<td>AKM+DNN+Face</td>
</tr>
<tr>
<td></td>
<td>RUN2_A</td>
<td>0.531</td>
<td>RUN1+Text</td>
</tr>
<tr>
<td></td>
<td>RUN2_E</td>
<td>0.549</td>
<td>RUN1+Text</td>
</tr>
<tr>
<td></td>
<td>RUN3_A</td>
<td>0.528</td>
<td>RUN2+Re-rank</td>
</tr>
<tr>
<td></td>
<td>RUN3_E</td>
<td>0.549</td>
<td>RUN2+Re-rank</td>
</tr>
<tr>
<td>Interactive</td>
<td>RUN4</td>
<td>0.677</td>
<td>RUN2+Human feedback</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Our approach
- Results and conclusions
- Our related works
1. Video concept recognition (1/2)

- **Video concept recognition**
 - Learn semantics from video content and classify videos into pre-defined categories automatically.
 - For examples: human action recognition and multimedia event detection, etc.

- **Playing Gitar**
- **Birthday Celebration**
- **Horse Riding**
- **Parade**
We propose two-stream collaborative learning with spatial-temporal attention:

- **spatial-temporal attention model**: jointly capture the video evolutions both in spatial and temporal domains
- **static-motion collaborative model**: adopt collaborative guidance between static and motion information to promote feature learning
1. Video concept recognition (2/2)

- We propose **two-stream collaborative learning with spatial-temporal attention**
 - **spatial-temporal attention model**: jointly capture the video evolutions both in spatial and temporal domains
 - **static-motion collaborative model**: adopt collaborative guidance between static and motion information to promote feature learning

Yuxin Peng, Yunzhen Zhao, and Junchao Zhang, “Two-stream Collaborative Learning with Spatial-Temporal Attention for Video Classification”, *IEEE TCSVT 2017 (after minor revision)* arXiv: 1704.01740
2. Cross-media Retrieval (1/5)

• **Cross-media retrieval:**
 - Perform retrieval among different media types, such as image, text, audio and video

• **Challenge:**
 - **Heterogeneity gap:** Different media types have inconsistent representations

Query examples of Golden Gate Bridge
2. Cross-media Retrieval (2/5)

- We propose **common representation learning based on sparse and semi-supervised regularization**, which models correlation and high-level semantics in a **unified framework**, and exploits complementary information among multiple media types to reduce noise.

\[
\arg \min_{P^{(1)}, \ldots, P^{(s)}} \sum_{i=1}^{s} \sum_{j=i+1}^{s} \| P^{(i)^T} X^{(i)}_{mij} - P^{(j)^T} X^{(j)}_{mij} \|^2_F + \sum_{i=1}^{s} \left(\| P^{(i)^T} X^{(i)} - Y^{(i)} \|^2_F + \lambda(\Omega(P^{(i)})) + \| P^{(i)} \|_{2,1} \right)
\]
2. Cross-media Retrieval (2/5)

- We propose **common representation learning based on sparse and semi-supervised regularization**, which models correlation and high-level semantics in a **unified framework**, and exploits complementary information among multiple media types to reduce noise.

Comment from Reviewers of TCSVT: “the proposed method is quite novel.”, and “**jointly represents several media** for cross-media retrieval, while the previous works usually deal with two different media”

- Yuxin Peng, Xiaohua Zhai, Yunzhen Zhao, and Xin Huang, “Semi-Supervised Cross-Media Feature Learning with Unified Patch Graph Regularization”, *IEEE TCSVT 2016*

- Xiaohua Zhai, Yuxin Peng, and Jianguo Xiao, “Learning Cross-Media Joint Representation with Sparse and Semisupervised Regularization”, *IEEE TCSVT 2014*
We propose a **cross-modal correlation learning** approach with **multi-grained fusion** by hierarchical network. It exploits **multi-level association with joint optimization** and adopts **multi-task learning** to preserve intra-modality and inter-modality correlation.
2. Cross-media Retrieval (3/5)

- We propose a **cross-modal correlation learning** approach with **multi-grained fusion** by hierarchical network. It exploits **multi-level association with joint optimization** and adopts **multi-task learning** to preserve intra-modality and inter-modality correlation.

- Yuxin Peng, Xin Huang, and Jinwei Qi. “Cross-media Shared Representation by Hierarchical Learning with Multiple Deep Networks”. *IJCAI 2016*.
- Yuxin Peng, Jinwei Qi, Xin Huang, and Yuxin Yuan, “CCL: Cross-modal Correlation Learning with Multi-grained Fusion by Hierarchical Network”, *IEEE TMM 2017*
• For addressing the problem of **insufficient training data** in DNN-based cross-media retrieval method, we propose **cross-media hybrid transfer network**, which exploits the semantic information of existing large-scale **single-media datasets** to promote the network training of cross-media common representation learning.
For addressing the problem of **insufficient training data** in DNN-based cross-media retrieval method, we propose **cross-media hybrid transfer network**, which exploits the semantic information of existing large-scale **single-media datasets** to promote the network training of cross-media common representation learning.

Xin Huang, Yuxin Peng, and Mingkuan Yuan, “Cross-modal Common Representation Learning by Hybrid Transfer Network”, *IJCAI 2017*.
2. Cross-media Retrieval (5/5)

- We have released **PKU-XMedia, PKU-XMediaNet** dataset with 5 media types. Datasets and source codes of our related works:

 ![Image and Text](http://www.icst.pku.edu.cn/mipl/xmedia)

<table>
<thead>
<tr>
<th>Image</th>
<th>Text</th>
<th>Audio</th>
<th>Video</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laughter</td>
<td>Leaders who have promoted holy laughter claimed that the...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stream</td>
<td>On topographic maps, stream gradient can be approximated if the...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Interested in cross-media retrieval? Hope our recent overview is helpful for you

3. Fine-grained Image Classification (1/4)

- **Fine-grained Image Classification:**
 - Recognize hundreds of subcategories belonging to the same basic-level category

- **Challenges:**

 Large variances in the same subcategory
 - Black Footed Albatross
 - Marsh Wren
 - BMW 1

 Small variances among different subcategories
 - Smart fortwo Convertible
 - Rock Wren
 - Hyundai Elantra
 - Winter Wren
 - Toyota Sequoia
• To address the problem of fine-grained image classification, **object-part attention model** is proposed, which is the **first work** to classify fine-grained images **without using object or parts annotations** in both training and testing phase, but still achieves promising results.
• To address the problem of fine-grained image classification, object-part attention model is proposed, which is the first work to classify fine-grained images without using object or parts annotations in both training and testing phase, but still achieves promising results.

• Yuxin Peng, Xiangteng He, and Junjie Zhao, "Object-Part Attention Model for Fine-grained Image Classification", IEEE TIP 2017

• Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and Zheng Zhang, "The Application of Two-level Attention Models in Deep Convolutional Neural Network for Fine-grained Image Classification", CVPR 2015
• To accelerate classification speed, **saliency-guided fine-grained discriminative localization** is proposed, which jointly facilitates fine-grained image classification and discriminative localization.
• To accelerate classification speed, **saliency-guided fine-grained discriminative localization** is proposed, which jointly facilitates fine-grained image classification and discriminative localization.

Xiangteng He, Yuxin Peng and Junjie Zhao, “Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN”, *ACM MM 2017*.
3. Fine-grained Image Classification (4/4)

- Considering the complementarity of text, **a two-stream model is proposed to combine vision and language** for learning multi-granularity, multi-view and multi-level representations.
• Considering the complementarity of text, a two-stream model is proposed to combine vision and language for learning multi-granularity, multi-view and multi-level representations.

Xiangteng He and Yuxin Peng, “Fine-grained Image Classification via Combining Vision and Language”, *CVPR 2017*.
Contact:
Email: pengyuxin@pku.edu.cn
Phone: 010-82529699
Lab Website:
http://www.icst.pku.edu.cn/mipl