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Abstract

This paper provides an overview of the runs submitted to TRECVID 2018 by ITI-CERTH. ITI-CERTH
participated in the Ad-hoc Video Search (AVS), Instance Search (INS) and Activities in Extended
Video (ActEV) tasks. Our AVS task participation is based on a method that combines the linguistic
analysis of the query with concept-based and semantic-embedding representations of video fragments.
The INS task is performed by employing VERGE, which is an interactive retrieval application that
integrates retrieval functionalities that consider mainly visual information. For the ActEV task, we
deploy a novel activity detection algorithm that is based on human detection in video frames, goal
descriptors, dense trajectories, Fisher vectors and a discriminative action segmentation scheme.

1 Introduction

This paper describes the recent work of ITI-CERTH1 in the area of video analysis and retrieval.
TRECVID [1] has always been a target initiative for ITI-CERTH given that is is one of the major
evaluation activities in the domain of video. In the past, ITI-CERTH participated in the Search task
under the research network COST292 (TRECVID 2006, 2007 and 2008) and in the Semantic Indexing
(SIN) task (also known as high-level feature extraction task - HLFE) under the MESH (TRECVID
2008) and K-SPACE (TRECVID 2007 and 2008) EU-funded research projects. In 2009 ITI-CERTH
participated as a stand-alone organization in the SIN and Search tasks, in 2010 and 2011 in the KIS,
INS, SIN and MED tasks, in 2012, 2013, 2014 and 2015 in the INS, SIN, MED and MER tasks
([2], [3], [4], [5]), in 2016 and 2017 in the AVS, MED, INS and SED tasks ([6], [7]) of TRECVID.
Based on the acquired experience from previous submissions to TRECVID, our aim is to evaluate our
algorithms and systems in order to improve them. This year, ITI-CERTH participated in four tasks:
AVS, INS and ActEV. In the following sections we will present in detail the employed algorithms and
the evaluation for the runs we performed in the aforementioned tasks.

2 Ad-hoc Video Search

2.1 Objective of the Submission

The goal in the TRECVID 2018 AVS task [8] is the development of techniques for retrieving a ranked
list of 1000 test shots for each ad-hoc query that are mostly related to it. Our system for the AVS
2018 task is based on ITI-CERTH AVS 2017 system and [9]. Taking into account the previous year
results, we modified our system considering two different directions. Firstly, we examine performing
a simpler linguistic analysis of the query, and secondly, we extend the pool of available visual concept
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detectors in order to cover a wider range of concepts from different categories (objects, events, places
etc.).

2.2 System Overview

Figure 1: Developed AVS system (modified from [9]).

An overview of the system we developed for the AVS task is presented in Fig. 1. Similarly to our
AVS 2017 system, our system consists of three main sub systems. Firstly, the concept-based keyframe
representation component (Fig. 1 (a)) annotates every video shot with semantic concepts using deep
learning, which results a vector representation that corresponds to the concepts that are depicted in the
video shot. In addition, the concept-based query representation component (Fig. 1 (c)) transforms
a given text query into an another vector of concepts. Subsequently, both query and video shot
concept-based representations are transformed to semantic-embedding representations (Fig. 1 (b)) as
described in [9]. Finally, given a test query, after the concept-based keyframe representations have
been calculated, our system measures their distance from the concept-based query representation, by
calculating their euclidean distance. Similarly, the distance between the semantic embedding keyframe
representations and the semantic embedding query representation is calculated and the two distance
vectors are combined in terms of arithmetic mean. The 1000 keyframes with the smallest distance are
then retrieved. The main components of the above process are further explained below.

2.2.1 Concept-based Keyframe Representation

The concept-based keyframe representation component of our system annotates each video shot with
concepts from a predefined concept pool. The output of this component is one vector for each
TRECVID AVS test video shot that indicates the probability that each of the concepts in the pool
appears in the video shot. Specifically, one keyframe was extracted from each video shot of the
TRECVID AVS test set and annotated from a set of predefined visual concept detectors. A key up-
grade of our current AVS system is the introduction of a large set of visual concept detectors. In our
2017 system the overall pool of concept detectors consisted of 4 different concept pools. Each video
shoot was annotated based on 1000 ImageNet [10], 345 TRECVID SIN [11] concepts, 500 event-related
concepts, and 205 place-related concepts. Beside these pools, in our current system, each video shot
was also annotated by 239 FCVID concepts, 365 place-related concepts, 1365 “hybrid” concepts, 4
additional sets of ImageNet concepts, and 3 additional concepts derived from TRECVID SIN.

Similarly to our previous year’s system, to obtain scores regarding the 1000 ImageNet concepts,
we applied five pre-trained ImageNet deep convolutional neural networks (DCNNs) on the AVS test
keyframes: i) AlexNet [12], ii) GoogLeNet [13], iii) ResNet [14], iv) VGG Net [15] and v) a DCNN that
we trained according to the 22-layer GoogLeNet architecture on the ImageNet “fall” 2011 dataset for
5055 categories (where we only considered in AVS the subset of 1000 concepts out of the 5055 ones).
The output of these networks was averaged in terms of arithmetic mean to obtain a single score for
each of the 1000 concepts. To obtain the scores regarding the 345 TRECVID SIN concepts we fine-
tuned (FT) the ResNet pretrained ImageNet network on the 345 concepts using the TRECVID AVS



development dataset and the extension strategy proposed in [16]. We applied the fine-tuned network
on the AVS development dataset and we used as a feature (i.e., a global keyframe representation) the
output of the last hidden layer to train one Support Vector Machine (SVM) per concept. Subsequently,
we applied this FT network on the AVS test keyframes to extract features, and used them as input
to the trained SVM classifiers in order to gather scores for each of the 345 concepts. To obtain scores
for the event- and place-related concepts we applied the publicly available DCNNs that have been
fine-tuned on the EventNet [17], FVCID [18], Places-205 [19], Places-365 [20] and Hybrid-1365 [21]
datasets. To enlarge the number of ImageNet concept detectors we additionally used 4 pre-trained
(GoogLeNet) models from [22]: ImageNet4437, ImageNet8201, ImageNet12988, and ImageNet4000.
Furthermore, we created 3 derived SIN concepts (woman, man and people) by merging existing SIN
concepts. For example, to create the concept woman all the female-oriented concepts (i.e. adult female
human, female human face closeup, female child etc.) were merged and the score for this concept was
calculated by max-pooling the individual scores. In a similar way the remaining two derived concepts
were created.

Consequently, a 33142-element concept vector was created for each test keyframe. Each element of
this vector corresponds to one concept, from the 33142 available concepts, and indicates the probability
that this concept appears in the video shot.

2.2.2 Concept-based Query Representation

The concept-based query representation of our system extracts cues from each query and represents it
as a vector of related concepts. Given the above pool of 33142 concepts and the textual description of
the query, our method identifies a set of concepts CQ that most closely relate to the query. Specifically,
the selected concepts form a vector where each element of this vector indicates the degree that each
concept is related to the query. For this reason, in our current system we examined three different
linguistic analysis approaches for cue extraction, which are described bellow:

(i) Firstly, similarly to our previous year’s AVS, a sequence of steps was followed. In the first
step, we search for one or more high-level concepts that are semantically similar to the entire
query, using the Explicit Semantic Analysis (ESA) measure [23]. If such concepts are found
(according to a threshold θ) we assume that the entire query is well described by them; the
selected concept(s) is (are) added in to set CQ (which is initially empty), and no further action
is taken. If this is not the case, in the second step we examine if any of the concepts in our
concept pool appears in the query by string matching, and if so these concepts are added in CQ.
The third step transforms the original query to a set of elementary “subqueries”. We define a
“subqueries” as a meaningful smaller phrase or term that is included in the original query. To
infer “subqueries”, conventional natural language processing procedures (NLP), e.g., part-of-
speech tagging, stop-word removal etc., are used, together with a task-specific set of NLP rules.
For example, if the original query contains a sequence in the form of “Noun - Verb - Noun”,
this triad is considered to be a subquery. Then in the fourth step, we check for concepts that
are semantically similar to any of the “subqueries” by calculating the ESA relatedness between
each “subquery” and the concepts in our pool. If there are concepts that exceed the threshold
θ (the same threshold as in the first step of this process), then these are added into the set CQ.
Otherwise, if CQ is still empty, in a final step the original query and all the subqueries are used
as input to the zero-example event detection pipeline [24], which jointly considers all this input
and attempts to find the concepts that are most closely related to it.

(ii) In a second approach, we modify the third step of the above process in order to decompose
the query in to simpler “subqueries”. More specifically, as “subqueries” we considered only the
Noun Phrases [25] that are included in the initial query. The rest of the procedure described
above for CQ calculation remains intact.

(iii) In a third approach, a much simpler, one-step linguistic analysis process was used, in place of
the procedure described above. Simple keywords were extracted by finding the nouns that are
included in each query. Then for each extracted keyword, the nearest concept from the concept
pool according to their word2vec representations were found and these concepts were added to
CQ.



Then, the query’s concept vector was formed by the corresponding scores of the selected concepts of
CQ. For the first two approaches, if a concept has been selected in steps 1, 3, 4 or 5 the corresponding
vector’s element was assigned with the relatedness score (calculated using the ESA measure), whereas
if it has been selected in step 2 it was set equal to 1. Finally, for the third approach, for each concept
of CQ the corresponding vector’s element was assigned with the similarity of the concept and the
corresponding keyword (calculated as the Euclidean distance of their representation).

2.2.3 Video Shot Retrieval

The third component of our system retrieves for each query the 1000 test shots that are mostly
related with it. Specifically, the distance between the query’s concept vector (Section 2.2.2) and the
keyframe’s concept vector (Section 2.2.1) for each of the test AVS keyframes is calculated. Similarly,
the distance between the semantic embedding representations of the query and each keyframe is
calculated and the two distance vectors are combined in terms of arithmetic mean.

2.3 Description of Runs

Four AVS runs were submitted in order to evaluate the potential of the aforementioned approaches
on the TRECVID 2018 AVS dataset [8]. The submitted runs are briefly described below:

• ITI-CERTH 1: The combination (late fusion by arithmetic mean) of runs 2 and 4 (explained
below).

• ITI-CERTH 2: Concept-based query representation: cues extraction from the query by consid-
ering only nouns; matching each cue with the most semantically related visual concept from
the concept pool (approach (iii) of Section 2.2.2). Concept-based keyframe representation as
described in Section 2.2.1.

• ITI-CERTH 3: Concept-based query representation as in approach (ii) of Section 2.2.2. Concept-
based keyframe representation as described in Section 2.2.1.

• ITI-CERTH 4: Concept-based query representation as in approach (i) of Section 2.2.2. Concept-
based keyframe representation as described in Section 2.2.1.

2.4 Ad-hoc Video Search Task Results

Table 1: Mean Extended Inferred Average Precision (MXinfAP) for all submitted runs for the fully-
automatic AVS task.

Submitted run: ITI-CERTH 1 ITI-CERTH 2 ITI-CERTH 3 ITI-CERTH 4
MXinfAP 0.043 0.047 0.040 0.034

Table 1 summarizes the evaluation results of the aforementioned runs in terms of the Mean Ex-
tended Inferred Average Precision (MXinfAP). Our team submitted only fully-automatic runs. We
can see in Table 1 that the simple keyword extraction on the input query (run ITI-CERTH 2) leads
to the best results. Overall, the large number of the available concept detectors seems to cover the
majority of visual cues that a query could relate to, and for this reason the decomposition of the
query in simple keywords (ITI-CERTH 2) is sufficient and outperforms approaches involving more
complicate linguistic analysis (ITI-CERTH 3 & ITI-CERTH 4).

3 Instance Search

3.1 Objective of the Submission

According to the TRECVID guidelines, the instance search (INS) [26] task represents the situation,
in which the user is searching inside a video collection for video segments of a specific person in a



specific place/scene. The user is provided with two sets of visual examples; the first contains the
specific person and the second the specific location. The collection of videos used in the INS task are
provided by BBC and they are part of the EastEnders TV series (Programme material BBC).

ITI-CERTH participates in the TRECVID 2018 INS task by submitting a single run that in-
corporated several algorithms that consider mostly visual information. The system and algorithms
developed are integrated in VERGE1 interactive video search engine.

3.2 System Overview

The INS task, like any process of image search, can be achieved through an interactive tool that will
provide users with the capability to efficiently retrieve relevant images. VERGE (Fig. 2) is a Web
user interface that serves as an image retrieval application and is able to incorporate different search
methods. The integrated modalities for this year involve: (a) Visual Similarity Search, (b) High Level
Visual Concept Retrieval, (c) Face Detection and Face Retrieval, (d) Scene Similarity Search, and
(e) Multimodal Fusion. Regarding the implementation, the system has been built with popular Web
technologies, i.e. HTML5, CSS, PHP, JavaScript, jQuery, and open-source libraries, such as Bootstrap
and Kendo UI.

A screenshot of the VERGE application is illustrated in Fig. 2, along with an indication of its
components. As it can be easily seen, the interface is separated in two main parts, namely a toolbar
on the top and a results panel that covers most of the screen.

The toolbar contains a multitude of useful features. Starting from the left, a burger icon toggles a
sliding menu where various search options appear. In detail, users can initiate the retrieval procedure
with the complete set of video shots, with landscape or general concepts, with predefined scene clusters
and topics. Next to the icon, there is a text field that investigates whether the given input (keywords)
exists in the metadata of the videos. Furthermore, there is a slider to modify the size of the images
and a timer that counts down the minutes delimited for the INS task submission.

Moving to the basic component of VERGE, videos results are displayed in a grid view through
a shot-base representation and are sorted by scores of similarity in a descending order. When users
hover on an image, additional search capabilities are offered to them. Visual, face, scene, and fusion
similarities can be performed by clicking the respective icon. Moreover, there is a check button to
select shots and submit them to the contest.

Fig. 2 can also serve as a demonstration of the core functionality of VERGE. Inspired by the
queries of the INS task, Face Retrieval and Scene Similarity Search are combined in the Multimodal
Fusion and its outcome is visible in the screenshot: frames that contain both a specific female character
and a convenience store.

3.2.1 Visual Similarity Search Module

The visual similarity search module performs content-based retrieval using deep convolutional neural
networks (DCNNs). The approach followed was the same with the one in TRECVID 2017 INS task [7].
Thus, we trained GoogleNet [13] on 5055 ImageNet concepts and the, we used the output of the last
pooling layer, with dimension 1024, as a global keyframe representation. In order to achieve fast
retrieval of similar images, we constructed an IVFADC index for database vectors and then computed
K-Nearest Neighbours from the query file. Finally, search is realized by combining an inverted file
system with the Asymmetric Distance Computation [27].

3.2.2 High Level Visual Concept Retrieval

This module facilitates search by indexing the video shots based on high level visual concept infor-
mation, such as water, aircraft, landscape and crowd. The concepts that are incorporated into the
system are the 346 concepts studied in the TRECVID-2015 INS task using the techniques and the
algorithms described in detail in [5] Section 2 (Semantic Indexing).

Apart from the 346 TRECVID concepts, a set of 356 scene categories using the VGG16 CNN
network was used for scene/ place recognition [20].

1http://mklab-services.iti.gr/verge/trec2018/



Figure 2: The VERGE Web User Interface

3.2.3 Face Detection and Face Retrieval Module

This module should identify human faces in images and it should also capture the face features from
the faces that have already been recognized. For the face detection part the algorithm that was applied
was [28], while the algorithm used for face retrieval module was the VGG-Face CNN descriptors which
were computed using the VGG-Very-Deep-16 CNN architecture described in [29]. As feature vector,
we considered the last FC layer with size 2622. Eventually, the face features were used for constructing
an IVFADC index similar to the one created in Section 3.2.1 that allows fast face retrieval.

3.2.4 Scene Similarity Search Module

In this module we use the feature vector from the fully connected layer of the VGG-16 Deep Con-
volutional neural Network [30] trained on Places 365 dataset [20]. We also use the output of the
softmax layer of the same architecture. The size of the feature vectors are 4096 and 365 respectively.
Eventually, the scene features were used for constructing an IVFADC index similar to the one created
in Section 3.2.1 that allows fast scene retrieval.

3.2.5 Multimodal Fusion Module

Given that the aim of INS task is to retrieve a specific person in a specific place, this module fuses the
DCNN-based face descriptors and the DCNN-based scene descriptors in a late fusion approach. The
method used for late fusion is the same with the one in TRECVID 2017 INS task [7]. Briefly, this
method fuses the two descriptors (or modalities) using a non-linear graph-based fusion approach [31].
For a query shot, an initial filtering stage is applied that keeps only the top−i relevant images according
to the dominant modality and then computes an i× i similarity matrix and an i× 1 similarity vector
per modality. The similarity matrices and vectors are fused in a non-linear and graph-based way,
providing a fused relevance score vector sq for the retrieved shots. Eventually, two ranked lists with
retrieved shots were created after considering both modalities as dominant, which are merged into a
single list using combMax late fusion.



3.3 Instance Search Task Results

We submitted a single run (I A B ITI CERTH 1) to the interactive INS task, that utilized the afore-
mentioned algorithms. According to the TRECVID guidelines, the number of topics were 21 and the
time duration for the run was set to five minutes. Table 2 contains the mean average precision for the
runs submitted the last four years in TRECVID INS task. We can see that our results are lower than
the previous 2 years and fall down to 2015 levels, however these results are neither characteristic of
our algorithm’s performance nor comparable to previous years as we didn’t have the time to perform
the whole set of experiments in this task due to lack of time. Nonetheless, we understand that it is
essential that we change our fusion strategy amongst the two modalities of our approach, namely face
and scene recognition, so that we can reach other teams retrieval levels in the future.

Table 2: MAP of INS task.

Run IDs Mean Average Precision

I A B ITI CERTH 1 (2018) 0.064
I A ITI CERTH 1 (2017) 0.135
I A ITI CERTH 1 (2016) 0.114
I A ITI CERTH 1 (2015) 0.064

4 Activities in Extended Video

For the ActEV (Activities in Extended Video) task, we deploy a novel activity detection algorithm that
is based on human/vehicle detection in video frames, HoG-HoF (Histogram of Gradient-Histogram of
optical Flow) [32] features, GMM model (Gaussian mixture models), Fisher vectors and an activity
SVM (Support Vector Machines) classifier.

4.1 Objective of the Submission

The ActEV evaluation addresses the problem of detection of activities in multi-camera streaming
videos. ActEV is an extension of the annual TRECVID Surveillance Event Detection (SED) evalua-
tion. The data used come for this task are an unreleased portion of the VIRAT dataset provided in
MPEG-4 format. The dataset is split in three parts: training, validation and test set. The number
of videos, frames and seconds of each dataset are shown in Table 3. From the test set a subset was
used for the constrained video detection task (Reference segmentation task). The number of targeted
activities to be detected was 12 and are shown in Table 4. The actual tasks in ActEV was 2: Activity
Detection (AD) and Activity-Object Detection (AOD), while the object of interest was persons and
vehicles. The first task involves the correct detection and recognition of each acitivity, meaning the
desired outcome of the module would be correct temporal boundaries of a targeted activity as well as
correct recognition of the type of activity performed. The second task addition to the previous goals
involved also the correct spatial detection of the person/objects involved in the activity, meaning the
detection of actual bounding boxes (bboxes) of each person/object involved in the activity in every
frame.

4.2 System Overview

The developed system was primarily focusing on the AOD task. The corresponding AD task used
the same approach without providing to the final results the bboxes of the objects. We rely on the
robustness of object detector to focus on objects of interest. We focus on all 12 target activities with
a single module although the objects involved in them was varying. Some activities involved the use
of just one kind of objects like for example Vehicle turning left which involved vehicle while other
activities involved both types of objects like Open truck which obviously involved both a person and
a vehicle.



Type of dataset Number of videos Number of frames Duration (secs)

Train 64 267139 8904.63

Validate 54 201953 6731.76

Test (all) 96 290207 9673.56

Test (Reference segmentation) 48 147037 4901.23

Table 3: TrecVID ActEV dataset

Target activities
Closing Closing trunk Entering Exiting

Loading Open Trunk Opening Transport HeavyCarry

Unloading Vehicle turning left Vehicle turning right Vehicle u-turn

Table 4: Target activities in TrecVID ActEV

4.3 Activities in Extended Video System

4.3.1 Training of the activity recognition system

For the training of our system we used the provided videos and the frames during which each activity
took place as well as the corresponding bboxes. All other frames were ignored in this procedure. More
specifically, the steps that were followed for the training part were:

1. A bbox preprocessing step which involved the merging of multiple bboxes participating in a
single action. In our case this could include only a person with a car. The merged bbox was an
enlarged bbox which included inside both objects. If a single object participated in this activity
its bbox was used instead.

2. Lower level HoG-HoF features, were extracted from the activity bbox (enlarged or from a single
object) after rescaling the area included in bbox to predined dimensions.

3. The features extracted from each bbox for 15 consecutive frames were concatenated to form an
activity feature.

4. A Gaussian Mixture Model (GMM) was created using every activity feature in order to formulate
a new data representation.

5. A Fisher vector was created for each activity by passing all activity features belonging to the
same activity to the GMM.

6. An activity classifier was created by training 12 1-vs-All linear SVMs using the Fisher vectors
as samples.

4.3.2 Testing of the activity recognition system

For the inference part our system was slightly modified and differentiated from the training part
mainly because of the absence of bboxes and activity boundaries. Depending on the existing of
activity boundaries the task were split into two separate tasks:

1. Activity-Object Detection in Extended Videos (phase AOD-ActEV).

2. Activity-Object Detection using Reference Segmentation (phase AOD-RefSeg).

The main difference being that in the former task no activity boundary information was given.
This meant that the videos ought to be parsed and the number, duration and initiation time ought
to be deducted by the video itself. This posed an extra difficulty in the object-activity detection
task. The later phase provided the system with the activity boundaries in which each activity took
place. By this way, the extra information of the number of activities to be detected was also provided
indirectly.



4.3.3 Testing for the Phase AOD-ActEV

Since in this phase there is no known information about the activities and objects to be detected
besides the type of objects and activity that should be detected the process had to parse the videos
in inquiring way so as to being able to detect both useful activities and objects but also ignore trivial
objects. The object detector was used to fetch the necessary bboxes but the later were filtered to get
rid of stationary objects which did not perform any action. We define an arbitrary frame span of 15
frames to compare the bboxes. For all matched bboxes, both in object type and bbox coordinates a
further comparison was performed to identify the bboxes which referred to stationary object. Those
were not taken into consideration any longer. The other object were used for creating the activity
features.

The next steps were followed in this phase:

1. An object detector based on Faster R-CNN [33] which was trained on 1) a subset of UAV123
dataset [34] manually annotated which involved persons, group of persons and cars, 2) a subset of
the actual trecVid ActEV training set also manually annotated for object detection was applied
on the first frame of the video.

2. A multi-object tracker which tracked the resulting by the object detector bounding boxes for 15
frames.

3. Low-level feature extraction for the bboxes that continued to be detected by object detector, to
create dense trajectories using HoG-HoF descriptors.

4. Concatenation of the low-level features to create the activity features. Activity features were
assigned to the same activity as long as the detected bboxes every 15 frames were overlapping
enough.

5. Creation of Fisher vector for each candidate activity. Activity was inferred by using the SVM
classifier.

4.3.4 Testing for the Phase AOD-RefSeg

In this phase the provision of activity boundaries posed some changes in the system architecture:

1. The search for activities was limited to the frames provided in the reference segmentation.

2. Only a single activity was detected in the final result for each activity frame span.

For the reference segmentation AOD/AD task the steps were:

1. The same object detector was applied on the first frame of each activity producing bboxes for
all object being detected.

2. A multi-object tracker which tracked the resulting by the object detector bounding boxes for 15
frames.

3. A second detection was performed after 15 frames in order to increase the accuracy of detected
bboxes. The bboxes which matched the previous bboxes were used to extract low-level features
for 15 frames. Those features were concatenated to create an activity feature.

4. For the following frames to the end of activity an activity feature was created every 15 frames.

5. Creation of Fisher vector for each candidate activity. Activity was inferred by using the SVM
classifier and assigning just a single activity to the activity span for the highest score of SVM.

In this phase also a similar threshold was set for the stationary objects, so as not be taken into
consideration.



min max mean Pmiss@RateFA=.15 mean Pmiss@RateFA=1

min 0.6181246 0.4405567

- mean NMIDE@RateFA=.15 mean N −MIDE@RateFA=1

min 0.07795288 0.111617

- mean Pmiss@RateFA=.15 mean Pmiss@RateFA=1

max 0.9994005 0.99807

- mean NMIDE@RateFA=.15 mean N −MIDE@RateFA=1

max 0.5794604 0.6667269

Table 5: Activity detection results

min max mean Pmiss@RateFA=1AD mean Pmiss@RateFA=1AOD

min 0.4536572 0.5576526

max 0.99807 0.9994005

Table 6: Activity vs Activity Object detection results

4.4 Activities in Extended Video (ActEV) Results

The results of Activity Detection task are shown at Table 5 where the minimum and maximum
performance of the primary system is presented. On the other hand, at Table 6 a comparison of the
results of Activity Object Detection task vs the Activity Detection task are shown while finally at
Figure 3 the Activity Object Detection results are graphically shown for every activity.

The results are evaluated using the following metrics:

• Pmiss(τ): the probability of missed detections at the activity presence confidence score threshold
τ .

• RateFA(τ): the rate of false alarms at the presence confidence score threshold τ .

• N −MIDE: Normalized Multiple Instance Detection Error which counts the accuracy of tem-
poral localization of detection instances is.

The proposed method combines deep neural network module with more traditional approaches like
HOG-HOF and SVM classification. The success of the method was based heavily on the high and
robust performance of object detection module which in our case was not secured. Certain aspects
that seem promising are the almost perfect linear discriminality of training activity fisher vector,
which achieved accuracy above 99%. This means that there is great potential for accurate activity
classification if object detection was more robust. Due to time limitation the model was not trained
for the time that was necessary and the generalization of the model is disputed. At this aspect the
presented results are not a good representative of proposed method and its full potential.

5 Conclusions

In this paper we reported the ITI-CERTH framework for the TRECVID 2018 evaluation [8]. ITI-
CERTH participated in the AVS, INS and ActEV tasks in order to evaluate new techniques and
algorithms. Regarding the AVS task, our approach with a simpler keyword extraction procedure,
in combination with the large pool of concepts, outperforms approaches involving more complicate
linguistic analysis. At Activities in Extended Video (ActEV) task a method combining deep neural
network object detection module with traditional HOG-HOF feature extraction and SVM fisher vec-
tors activity classification. Though the results are not the expected ones some aspects of the process
seem promising and we intend to intensify our effort for finer system tuning and proper model training
in the future. At INS task, in the future, not only we plan to improve our face and scene recognition
algorithms, so as to get improved results for retrieving BBC movies database at feature representation



Figure 3: Activity Object Detection results

level, but also we plan to build a more advanced fusion approach for leveraging the outcome of the
two above and show more True Positives (TP) to the end-user of the Verge system.
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