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Abstract

Spatiotemporal localization of activities in untrimmed
surveillance videos is a hard task, especially when given
the occurrence of simultaneous activities across different
temporal and spatial scales. We tackle this problem using
a cascaded region proposal and detection (CRPAD) frame-
work implementing frame-level simultaneous activity detec-
tion, followed by tracking. We propose the use of a frame-
level spatial detection model based on advances in object
detection and a temporal linking algorithm that models
the temporal dynamics of the detected activities. We also
evaluate a proposal-based approach to the multi-activity,
multi-label problem through cascaded modules of detection,
tracking and recognition. A combination of handcrafted
rules and deep learning methods show encouraging results
to the activity detection problem. We show results on the
VIRAT dataset through our participation at the recent 2018
TRECVID ActEV Challenge.

1. Introduction
We aim to address the problem of spatiotemporal activity

detection. Given an untrimmed video sequence with multi-
ple activities, our goal is to detect, classify and track every
activity and their constituent actors at frame-level. Com-
pared with object detection and recognition, the task of ac-
tivity detection and tracking presents an even stiffer chal-
lenge due to arbitrary temporal duration of activities, pres-
ence of simultaneous activities and the reality of large intra-
class variation of activities. These issues are exposed by
the TRECVID Activities in Extended Video (ActEV) Chal-
lenge1 [1, 2], in which we participated as the USF Bulls
team. The task was to detect 19 activities of interest in
surveillance videos of the VIRAT dataset2 [3].

Advances in object detection and recognition have in-

1https://actev.nist.gov/
2http://www.viratdata.org/

spired a variety of approaches to activity detection based on
deep learning [4, 5]. A common approach has been to detect
activities in individual frames or short frame snippets and
then to temporally link such spatiotemporal regions (called
action tubes) to detect activity segments. Such methods pro-
cess and fuse motion- and appearance-based features sepa-
rately. There have been several approaches to temporal de-
tection of activities in untrimmed videos [6, 7, 8, 9, 10] and
spatial detection in trimmed videos [11, 12]. There have,
however, been fewer of those to tackle the problem of spa-
tiotemporal localization of activities [13, 14, 15]. Some
approaches to temporal segmentation have the underlying
assumption that there are no simultaneous activities occur-
ring in the same temporal segment. However, surveillance
videos such as those in the VIRAT dataset pose a differ-
ent set of problems: (1) there can be multiple simultaneous
activities, (2) an actor or object can have multiple activity
labels and (3) there are large intra-class variations and small
inter-class variations. The latter poses a significantly differ-
ent challenge to traditional approaches to object detection,
where there are less intra-class variations and more inter-
class variations.

We build a cascaded region proposal and detection
framework involving frame-level simultaneous activity de-
tection and tracking. The proposed approach has two ma-
jor parts: (1) a spatial activity proposal network based on
YOLO [5] and (2) a probabilistic temporal linking model
that takes frame-wise spatial detections and outputs action
tubes such as those in [13]. This approach has been pro-
posed in [16] and for completeness we describe it again in
Section 2.

2. Cascaded Region Proposal and Detection
Framework

As shown in Figure 1, a feature extraction network and a
frame-wise activity detection network are combined to gen-
erate frame-level activity proposals. These frame-wise de-
tection outputs are linked temporally to generate spatiotem-
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Figure 1. Overall architecture: The proposed approach is shown here. There are three basic components to the approach: a feature
extraction network, a frame-wise activity detection network and a temporal linking model.

poral activity detections. In this section, we discuss model
architecture and training procedures of the proposed Cas-
caded Region Proposal and Detection (CRPAD) framework.

2.1. Frame-wise Activity Region Proposal

We use a spatial activity detection network, similar to
that proposed by Redmon et al. [5]. We then extract spa-
tial features using the deep CNN, Darknet-53, a variation
of Darknet-19 [17]. The activity proposal network is built
on top of the final convolutional layer of the Darknet-53
network. An action-ness map is constructed by convolving
across the final activation map of the CNN feature extrac-
tion model and constructing an S×S grid for the image and
class probabilities for each of the grids. We then fix the grid
size to be 13 × 13 and predict the probability of each class
occurring in each grid. Finally, we use this grid to regress
the bounding box similar to what is proposed in [5].

Training Details: We first pre-train the feature extrac-
tion network, Draknet-53 on the ImageNet dataset [18]. We
choose Draknet-53 after experimenting with different, shal-
lower architectures such as VGG16 (CITE). We find that
the shallower networks are not as conducive to fine-grained
detection as Draknet-53. We then train the final detection
layer on the target dataset, VIRAT. The network was trained
end-to-end at the frame-level, with the minibatch size set to
be 128. We ensured that the minibatch was balanced across
activities by selection of frame images across sequences.

2.2. Temporal Linking Model

We employ a probabilistic temporal linking, based on the
Viterbi algorithm [19]. The bounding box region proposals
(d ∈ D) from the activity proposal network defined in Sec-
tion 2.1 are used as input to the temporal linking model. We
denote the i-th region proposal from time t by dit. The tem-
poral affinity score between two regions dit and djt+1 from

consecutive frames is given by

Sc(d
i
t, d

j
t+1) = (1−β)Ec(d

i
t)+βEc(d

j
t+1)+ψdi

t,d
j
t+1

(1)

where ψdi
t,d

j
t+1

is the distance between the center of the

bounding boxes dit, d
j
t+1 and Ec(·) is the class confidence

score of the given region proposal and β is a temporal mem-
ory factor. The linking score is high for region proposals
that share class confidence scores and overlap highly in con-
secutive frames. The region proposals with maximum total
temporal affinity are combined to form action tube propos-
als. We also experimented with a greedy linking algorithm
for combining high confidence bounding boxes in succes-
sive frames, but found that the Viterbi algorithm performs
better.

2.3. Evaluation

We evaluate the efficacy of the proposed approach at
each stage of the pipeline. For evaluating the spatial lo-
calization capacity of the region proposal network, we set a
threshold of 50% Intersection over Union (IOU) and com-
pute the accuracy of detected bounding boxes regardless of
the predicted class. We evaluate the overall framework by
the probability of missed detection as defined in the 2018
TRECVID ActEV Challenge [1, 2].

From our experiments, we found the region proposal net-
work to have an accuracy of 57.23% across all activities
on the validation set. This corresponds to the detection of
38.64% activities on the validation set, with a threshold of
10% temporal overlap between the ground truth and frame-
wise bounding boxes predictions. Overall, the proposed ap-
proach achieves a p-miss of 85% and 93.4% at the rate of
0.15 frames per second on the validation and test sets re-
spectively and 68.12% p-miss at the rate of 1.0 false alarms
per minute on the validation set.
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Figure 2. Architecture of the method consists of three steps: detection by SSD, tracking by MOSSE and recognition by LSTM+HCF.

3. Detection-Tracking-Recognition Approach
In this section, we describe an alternative approach to

activity detection. We use a cascaded framework of detec-
tion, tracking and recognition for multi-activity detection in
surveillance videos. The overall architecture is shown in
Figure 2. We describe each module in detail below.

3.1. Detection

The first step is to detect objects independently in
frames of input videos. We adopt the Single-Shot Detec-
tor (SSD) [20] for multiple object classes that predicts class
scores and bounding boxes for a fixed set of default bound-
ing boxes using small convolutional filters applied to feature
maps extracted by VGG16.

SSD discretizes the output space of bounding boxes into
a set of default boxes over different aspect ratios and scales
per feature map location. At prediction time, the network
generates scores for the presence of each object category
in each default box and produces adjustments to the box to
better match the object shape. Additionally, the network
combines predictions from multiple feature maps with dif-
ferent resolutions to handle objects of various sizes. The
overall objective loss function is a weighted sum of local-
ization loss Lloc between predicted box (l) and ground truth
box (g) parameters and confidence loss Lconf over multiple
class confidences (c)

L (x, c, l, g) =
1

N
(Lconf (x, c) + αLloc (x, l, g)) (2)

where x are indicators for matching default boxes to ground
truth boxes, N is the number of matched default boxes and
α is set to 1 by cross validation.

We run an implementation3 of SSD on every 5-th frame
of each video adjusted to 512× 512. Resulting detec-
tions of confidence below 0.25 and object class not in
{person, car , bus} are filtered out.

3Code obtained from https://github.com/elranu/ssd_
pi/blob/master/ssd_predictor.py and pre-trained weights
from https://github.com/elranu/ssd_pi/blob/master/
trained_weights/VGG_coco_SSD_512x512.h5.

3.2. Tracking

The second step is to track the detected objects by stitch-
ing their bounding boxes as their position and appearance
changes in time during observation. We use a tracker
based on training the Minimum Output Sum of Squared Er-
ror (MOSSE) [21] correlation filter initialized using a sin-
gle frame (input) and trained on the subsequent frame (out-
put) to predict location of each tracked object with maxi-
mum correlation. MOSSE is robust to variations in lighting,
scale, pose, and non-rigid deformations.

Training is conducted in the Fourier domain to take ad-
vantage of a simple element-wise relationship between in-
put and output. Let Fi, Gi and Hi be the Fourier transform
of the input images, output images and filters, respectively.
Then

Gi = Fi �H∗
i (3)

where � is element-wise multiplication and ∗ indicates the
complex conjugate. MOSSE finds a filter H that minimizes
the sum of squared error between the actual output of the
convolution and the desired output of the convolution by

min
H∗

∑
i

|Fi �H∗ −Gi|2 . (4)

Fed with the SSD output from the first step, the used
implementation4 processes each frame of the input video
by initializing new trackers on detected bounding boxes
that are not assigned to any trackers and updating all ex-
isting trackers from previous frame. After the video is pro-
cessed entirely, MOSSE outputs the object tubes adjusted
to 320×240 and temporally segmented to the average length
of individual activities in the ground truth.

3.3. Recognition

The final step is recognition of the object tubes into
classes that represent 19 described activities of interest.
We modify the multi-class VGG16-based Long Short-Term
Memory (LSTM) [22] algorithm into a regressor that for

4Code obtained from https://github.com/opencv/
opencv/blob/master/samples/python/mosse.py.

https://github.com/elranu/ssd_pi/blob/master/ssd_predictor.py
https://github.com/elranu/ssd_pi/blob/master/ssd_predictor.py
https://github.com/elranu/ssd_pi/blob/master/trained_weights/VGG_coco_SSD_512x512.h5
https://github.com/elranu/ssd_pi/blob/master/trained_weights/VGG_coco_SSD_512x512.h5
https://github.com/opencv/opencv/blob/master/samples/python/mosse.py
https://github.com/opencv/opencv/blob/master/samples/python/mosse.py


a given track outputs the confidence in a specific activity.
Therefore, 19 LSTM regressors are learned to produce con-
fidence scores for every activity.

The LSTM network is trained on an equal number of in-
stances of a given activity as positive samples of other activ-
ities of the same subject type as negative samples. That is,
the LSTM regressor for activity carrying is trained on about
200 instances of carrying and 200 instances of non-carrying
activities a person can perform such as closing trunk or tex-
ting on phone. We use the ground truth annotations as in-
put to train the network. We add a fully connected layer to
produce class probabilities for each of the 19 classes in the
dataset, based on the hidden state of the RNN at the final
time step. We use the traditional cross entropy loss with
softmax activation from the output of the fully connected
layer. We use Stochastic Gradient Descent to the train the
recognition network, with the number of time steps to the
LSTM being 20. Learning rate is set 10−3 at the first epoch
and reduced to 10−4 on epoch 10, then to 10−5 on epoch 30
and finally to 10−6 on epoch 100. Training is terminated on
an epoch of saturated validation loss.

Additionally, a series of reasonable hand-crafted filters
(HCF) is applied to the resulting confidence scores to sup-
press unlikely activities with a potentially high confidence
caused by high visual similarity with respect to the LSTM
features. These filters, for example, allow only vehicles to
turn left or right, and only people to talk or ride a bike. An-
other filter calculates angle between directions at the begin-
ning ([xb, yb]) and at the end ([xe, ye]) of a vehicle tube by
the 2D arcus tangent

arctan(xbye − ybxe , xbxe + ybye) (5)

to classify the turn as left when negative or as right when
positive. Finally, confidences in all activities of all static
tubes are set to zero since there is no action.

3.4. Evaluation

The SSD produces bounding boxes with 50.3% mis-
detection rate and 92.3% false alarm rate. The bound-
ing boxes are then temporally and spatially connected into
tubes by MOSSE with similar 50.5% misdetection rate and
92.9% false alarm rate. Note that the false alarm rate is high
mainly because even objects that are detected and tracked
correctly are not engaged in any of the 19 activities in a
large number of frames, thus they do not hit ground truth
bounding boxes. Finally, on the validation set, the com-
plete approach that consists of detection by SSD, tracking
by MOSSE and recognition by LSTM trained using ground
truth segmentation and HCF filters achieves a misdetection
rate of 88.5% at the rate of 0.15 false alarms per minute
and 76% misdetection rate at the rate of 1.0 false alarms per
minute.

4. Discussion and Future Work
As can be seen from the experimental evaluation, the

proposed approach provides a platform for spatial localiza-
tion of activities at the frame level without explicit temporal
modeling. We believe that the use of temporal modeling at
both the semantic and feature levels would help in improv-
ing the performance of the proposed approach. Addition-
ally, we find that our approach is able to identify the dif-
ferences in fine-grained activity classes such as vehicle turn
left and vehicle turn right with a high degree of accuracy,
even without explicit temporal modeling.
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