

Kobe University and Kindai University at TRECVID 2018 AVS Task

Kimiaki Shirahama¹, He Zhenying² and Kuniaki Uehara² Department of Informatics, Kindai University Graduate School of System Informatics, Kobe University

Cascade Construction

Cascade-based Retrieval

Topic 566: Find shots of a dog playing outdoors

Outdoor (1)

outdoor (4)

Dogs (1)

dog (3)

high

sore

low

score

Final score =

Outdoor (1)

outdoor (4)

Indoor (1) $\times 0.5$

Dogs (1)

dog (3)

Indoor (1)

score =

Dogs (1)

dog (3)

high

sore

Result

filter out

half with

low

score

1. Normalize detection scores

power normalization

min-maxnormalizatio

filter out

half with

low score

rank

 $(\alpha = 0.15)$

2. Filter out

3. Rank

Outdoor (1)

outdoor (4)

Dogs (1)

dog (3)

Indoor (1)

score =

Outdoor (1)

outdoor (4)

Top 1000

Indoor (1) × 0.5

Abstract

This year we addressed the following two points:

- How to fuse concept detection scores for accurate retrieval Cascade-based approach that uses a sequence of stages to gradually filter out irrelevant shots
- How to deal with a topic requiring the number of objects or their relation **Object detection** to analyze detected regions

Concept detection

345 SIN concepts: Detection scores that are provided by ITI-CERTH team and obtained by SVM-based fine-tuning of pre-trained network

1000 ImageNet concepts: ResNet152 implementation in YOLO to detect 1000 concepts in **ImageNet**

9418 ImageNet concepts: darknet9000 to detect 9418 concepts that are organized into a hierarchical tree

385 Places concepts: ResNet152 fine-

tuned for 365 scene concepts defined in Places 365, as well as max-pooling to obtain detection scores for their 20 super-concepts

487 Sports1M concepts: C3D to detect 487 concepts defined in Sports1M dataset.

1000 9418 **ImageNet**

Negative concept:

indoor

Concept Selection

1. Generality: Use the most general concept

e.g. Topic 566: Find shots of a dog playing outdoors

2. Specificity: Use a specific concept deduced from a phase in a topic

e.g. Topic 563: Find shots of one or more people on a moving boat in the water

boatman

a) Cascade for Topic 561: Find shots of exactly two men at a conference or meeting table talking in a room Meeting (1)

c) Separate cascades: Multiple cascades are

used for a topic including "or"

Selected concepts are organized into a cascade

where each concept is associated with one stage

a) Order of stage: As a concept is more general,

the corresponding stage is placed earlier

b) Parallel: Multiple concepts representing the

same (or very similar) meaning are placed in

Conference Room (1)

conference room (3)

table (3)

table (3)

b) Cascade for Topic 566: Find shots of a dog playing outdoors

Dogs (1) Outdoor (1) dog (3) outdoor (4)

Two_People (1) Talking (1)

parallel

c) Two separate cascades for Topic 567: Find shots of people performing or dancing outdoors at night time

Nighttime (1) performer (3)

Manually Select

Organized into a cascade

Object Detection by Mask R-CNN 5

Refinement Cascade **Get Retrieval Result**

Refinement by Object Detection

Topics with requirement on the number of objects or their spatial relationship

Topic 561: Find shots of exactly **two** men at a conference or meeting table talking in a room.

Topic 584: Find shots of a person lying on a bed.

Spatial relationship

Object detection by Mask R-CNN

center of gravity of person By mask R-CNN we obtain label, probability and mask of object instances

center of gravity of bed

Examination of the top 10000 shots retrieved by the cascade-based approach

- **☐** Number of objects:
 - Use the number of instances with the same label in a keyframe
- ☐ Spatial relationship between objects:
 - Get center of gravity of each object instance by calculating average of all pixel coordinate in the instance mask
 - Determine the spatial relationship by comparing the center of gravity of an object to the one of another object

Shot filtering

Filter out shots with not exactly two people(works well)

Filter out shots in which person's position is lower than bed's(doesn't work well)

Future work

- Adopt an "embedding-based" approach to avoid cumbersome issues in the concept-based approach, like concept selection and score fusion/pooling
- Use Deep relational network to specifically predict the complex relationships between objects.

Results

outdoor (4)

Topic

- M_D_kobe_kindai.18_1:Baseline that uses the cascade-based approach without object detection.
- M_D_kobe_kindai.18_2: Refinement of shots retrieved by M_D_kobe_kindai.18_1 with object detection
- M_D_kobe_kindai.18_3: Slightly different sets of concepts from M_D_kobe_kindai.18_1 for some topics
- M_D_kobe_kindai.18_4: Simple summation of detection scores for the selected concepts.

with stages

Concepts

- 1. M_D_kobe_kindai.18 4 is ranked at the seventh place among 16 runs in the manually-assisted category. (Our team is ranked at the third place among six teams)
- 2. Adoption of the large concept vocabulary leads to good performances.

- 1. Our runs achieved the best average precisions for the six topics in the manually-assisted category.
- 2. No significant difference is observed between using the cascade-based approach and not-using it.
- Cascade-based approach reduces search time (from 5.9s to 4.0s).

For complex relations between objects like waving

flags and pouring liquid, our current method only

standing in line outdoors. on a bed For topics requiring spatial relationship

• The person's center of gravity is higher than bed's, but the person is sitting on the bed.

For complex topic · Although we obtained masks of object instances, it's difficult to define which situation is correct.)

Object detection effectively refines retrieval results, especially when the number of objects is required.

considers their co-occurrence

- For topics requiring spatial relationship, object detection didn't work as good as we expected.
- For complex shot, it's difficult to define which shot is correct