Waseda Meisei at TRECVID 2018: Fully-automatic Ad-hoc Video Search

Yu Nakagome¹, Kazuya Ueki^{1,2}, Koji Hirakawa¹, Kotaro Kikuchi¹, Yoshihiko Hayashi¹, Tetsuji Ogawa¹, and Tetsunori Kobayashi¹ ¹Waseda University, ²Meisei University

1.Background

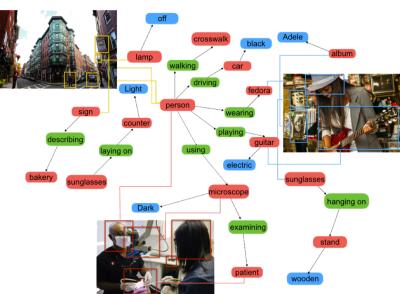
Ad-hoc Video Search task objective:

To return a list of at most 1000 shot IDs ranked according to their likelihood for each query.

• Our retrieval system

Based on <u>a large semantic classifier bank</u>.

"Find shots of a man playing a guitar outdoor" INPUT


Classifier bank Classifier Selection Man Classifier, Banana System # is more Classifier, Guitar Classifier, ...

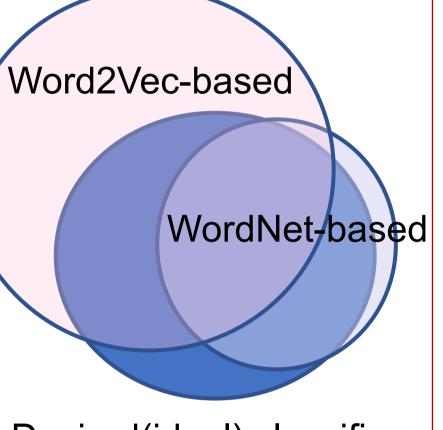
(2)Action recognition system for video search

We added action classifiers trained by following datasets;

ACTIVITYNET

Dataset	description
ActivityNet	Action, 200 class,648 video hours
Kinetics	Action, 400 class, 500,000 videos
Visual genome attribute	Adjective + noun
Visual genome relationship	Phonetic noun phrase (E.g. wearing a suit)

We proposed the following system which selects appropriate classifiers from the verb phrase in query.

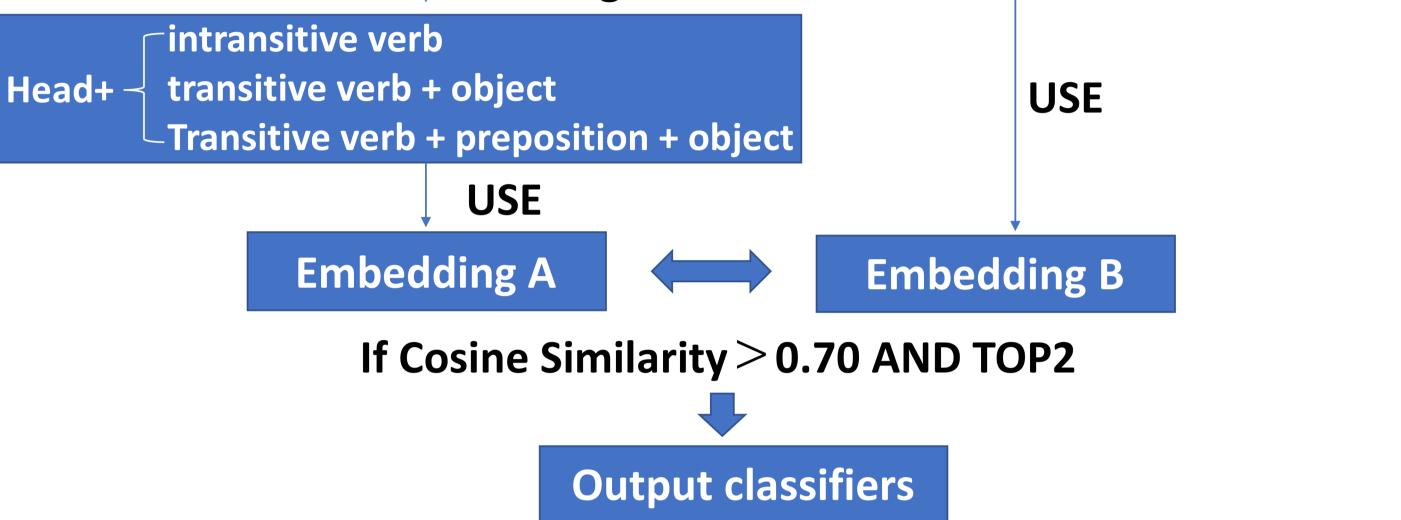

noisy Query **Extract Action Phrase** | chunking

Action classifiers and other all Classifier names

0.70 Score of the video for query

- **Conventional classifier selection methods**
- Word2Vec-based method
 - Based on cosine similarity of Word2Vec between keywords of query and classifier names.
- WordNet-based method
 - choosing classifiers if keywords of query and synsets of classifiers match.
- Classifier bank did not have much action classifiers.

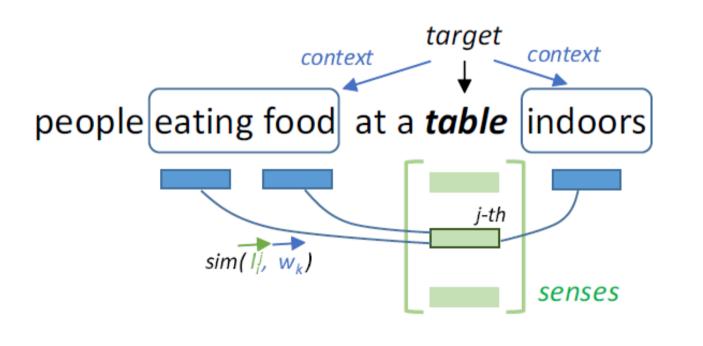
Classifier names


mostly consist of

less than 3 words.

than

Desired(ideal) classifiers


Problems to be solved. 1 It is difficult to select appropriate classifiers

3.Experiment

4.1 Experimental setup

- TRECVID 2018 AVS task.
- # of queries is 30.
- # of target videos is 335,994.
- Baseline is [Hirakawa et al.2017]
- Evaluation measure was set to MAP (Mean Average Precision)

by using just only classifier names or its synsets. 2 We did not use action phrase in query.

2. Approach

(1)Using dictionary definition sentences for classifiers which trained by ImageNet

The purpose of this method is to select more appropriate classifiers by adding **auxiliary information** to classifier names. We obtained a vector representation of a sentence by using **Universal Sentence Encoder (USE)** [Daniel Cer et al. 2018].

The **ImageNet** classes are linked to WordNet. So the dictionary definition sentence is available. e.g. <u>S:</u> (n) **smoker**, <u>tobacco user</u> (a person who smokes tobacco)

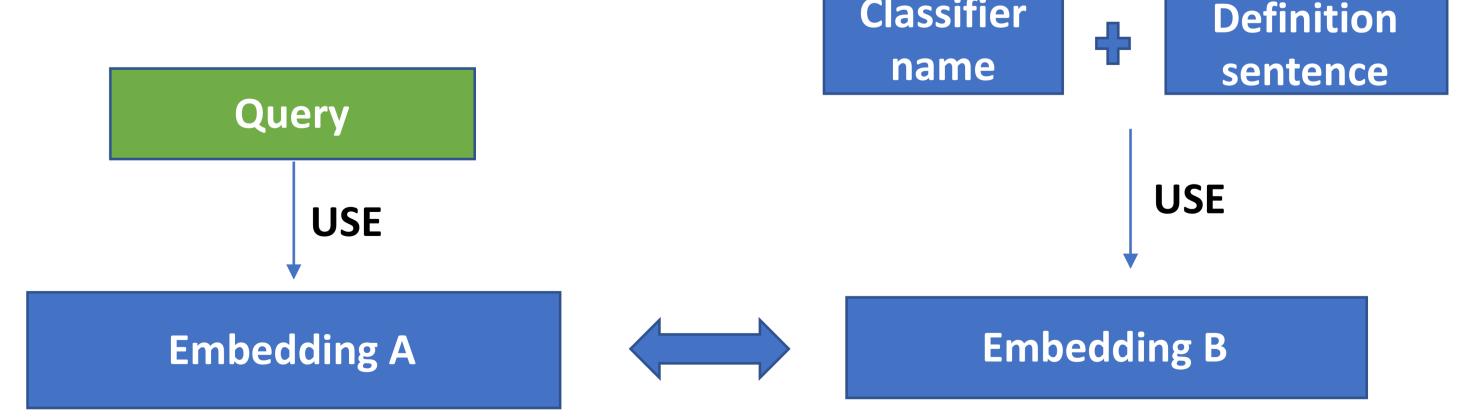
4.2 Experimental results

(1) Using dictionary definition sentences for classifiers which trained by ImageNet

Method	MAP score	
Baseline	0.0298	
Baseline + Definition Weight(1:20)	0.0424	
("Definition" is proposed system)		

⁽²⁾Action recognition system

Method	MAP score	
Manual (upper limit)	0.106	
Baseline	0.0298	
Action	0.0452	
Baseline + Action (weight 1:50)	0.0622	
("Action" is proposed system)		


Query: Find shots of a person playing keyboard and singing indoors -><u>S</u>: (n) keyboardist (a musician who plays a keyboard instrument) Query: Find shots of a person lying on a bed ->S: (n) rester (a person who rests) It was confirmed that both proposed systems achieves good performance

in this task.

4. Results of Submitted Runs

method

MAP score

Classifier

We select classifiers if the head of query and the classifier name have the same hypernym AND the cosine similarity of two embedding is TOP2

Output classifiers

Cosine similarity; $\cos(\vec{q},\vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|r|} q_i d_i}{\sqrt{\sum_{i=1}^{|r|} q^2} \cdot \sqrt{\sum_{i=1}^{|r|} q^2}}$

1.0*Definition + 99.0*Action+1.0* Baseline	0.060	٦
1.0* Definition + 5.0*Action + 1.0*Baseline	0.057	Submitted
1.0*Definition + 1.0* Action + 1.0*Baseline	0.040	runs
2.0* Action + 1.0*Baseline	0.040	
Manual(Upper limit)	0.106	
13*definition + 30*Action + 1.0*Baseline (grid search)	0.073	
RUCMM.18 (No.1 score)	0.121	

Our team was 6th.

We combined three methods by calculating the weighted sum. The result changes greatly depending on this weight. Because the reliability of methods change with each query, it is difficult to define the weight. The problem is that even with the manual ideal classifier selection, we lose to other teams. We have to review classifier bank based system. Image recognition system should be updated by using object detection, scene graph.