Video to Text, TRECVID 2018

Korea University (Intelligent Signal Processing Laboratory) Youngsaeng Jin, Jeonggi Kwak, Younglo Lee, Jeongseop Yun, Hanseok Ko

Intelligent Signal Processing Laboratory

- Introduction
- Architecture
- Input descriptor
- Experiment
- Result
- Conclusion

BERY

- Video to text
 - Describe a dynamic visual content with a natural language text

"Two guy are playing baseball."

A S A S

- Issues in video to text
 - Scene is too complex for machine to describe
 - Hard to capture all video information
 - Variable length of input and output

"A man helps the other man get up from the ground"

Architecture

- Sequence to Sequence Video to Text(S2VT) [1] A stack of two LSTM layers
 - Encoding stage : Frames \rightarrow Visual representation
 - Decoding stage : Visual representation \rightarrow Words
 - A limitation to represent all information of a video into a fixed-length representation h_{enc}

[1] Venugopalan, Subhashini, et al. "Sequence to sequence-video to text." *Proceedings of the IEEE international conference on computer vision*. 2015.

- Attention mechanism [2]
 - Achieve great performance on similar sequence-to-sequence tasks like machine translation
 - Look over all the information included in the input frames
 - Pay more attention to important frames and generate the proper word through a context vector

[2] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. *arXiv* preprint arXiv:1409.0473.

Architecture

Intelligent Signal Processing Laboratory

- Attention in encoder-decoder network
 - The decoder attends to difference parts of the encoder information
 - Learn how to generate a context vector c_i instead of a single fixed vector

he weight
$$a_{ij} = \frac{1}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

where $e_{ij} = \alpha(s_{i-1}, h_j)$ $\alpha(\cdot)$ is alignment model which is trained

 $\exp(e_{ii})$

- S2VT + Attention
 - A stack of two LSTMs with 1024 hidden units each.
 - The context vector is computed by hidden states of 2nd LSTM layer in encoder
 - The context vector is contributed to 2nd LSTM layer in decoder

A S A S

Input Descriptor

- Concatenation of visual, audio, detection information
 - Visual feature (4096 dim)
 - Audio feature (128 dim)
 - Object detection (81 dim)

BFAX BFAX

[3] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014)

[4] Hershey, Shawn, et al. "CNN architectures for large-scale audio classification." Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on. IEEE, 2017.

[5] He, Kaiming, et al. "Mask r-cnn." Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017.

- Overfitting
 - Data augmentation
 - Additive random noise on input descriptor
 - Dropout
 - Apply on both LSTM (training phase)

AS AS B

Decision criterion

- Description generation
 - Choose a word with maximum probability at each timestep
 - Concatenate words in all timesteps
- Matching and ranking
 - Comparison : caption vs caption (Generation vs Reference)
 - Measurement metrics : METEOR, BLEU
 - Scoring : 1.2 * METEOR + BLEU

Experiment

- Database
 - 1. MSVD
 - 2. M-VAD
 - 3. MSR-VTT

Table 1. Statistics about 3 dataset in our task.

	MSVD	MVAD	MSR-VTT
# video	1,564	4,951	6,074
# description	67,139	4,951	121,021
# avg description	40	1	20
# vocab	12,316	10,984	22,451

Experiment

- Run types
 - Run 1: VGG (no attention)
 - Run 2: VGG (Primary)
 - Run 3: VGG + Sound
 - Run 4: VGG + Sound + Detection

A S A S

■Run1 ■Run2 ■Run3 ■Run4 ■Avg

TIA

5

■Run1 ■Run2 ■Run3 ■Run4 ■Avg

• Quantitative performance

Run	BLEU	METEOR	CIDEr	STS
1	0.00181	0.13876	0.095	0.3402
2	0.00259	0.14782	0.105	0.3454
3	0.00159	0.13998	0.101	0.3508
4	0.00291	0.15006	0.097	0.3298

Bry A'S

ER

- Results
 - Example 1

Run	Description
1	A baby is playing with
2	A man is playing with baby
3	A woman is holding a baby while two men are sitting on the couch playing with a baby
4	Someone his to the floor
GT	A small black girl dressed in a white top and black skirt making motions with her hands and fingers walking among many adults sitting down

W R R

ERI

2

- Results
 - Example 2

Run	Description
1	A man is dancing
2	A man is sitting on a bench and playing with the dog
3	A man is standing by a horse
4	A girl is waiting in a pink bag
GT	A young man, dressed with an Abaya and Arabic outfit, is singing, to a donkey that is moving its head right and left, outdoors.

W R R J

ERI

2

• Matching & Ranking – Set A: 6 / 10

■Run1 ■Run2 ■Run3 ■Run4

W KOREA

ERI

TIA

• Matching & Ranking- Set B: 5 / 10

■Run1 ■Run2 ■Run3 ■Run4

W KOREA

ERI

TIA

■Run1 ■Run2 ■Run3 ■Run4

■Run1 ■Run2 ■Run3 ■Run4

W KOR

ERI

I A

• Matching & Ranking – Set E:5/10

■Run1 ■Run2 ■Run3 ■Run4

W KOREA

ERI

TIA

- ERITAS
- Attention-based sequence-to-sequence model was effective to accurate description generation of video clips.
- Various combinations of visual feature, acoustic feature and detection result are used for an input descriptor of the model.
 - The performance with additional features didn't show great improvement
- The performance is improved when attention mechanism is exploited.

