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Introduction
• Video to text

– Describe a dynamic visual content with a natural language text
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“Two guy are playing baseball.”



Introduction
• Issues in video to text

– Scene is too complex for machine to describe
– Hard to capture all video information
– Variable length of input and output

4“A man helps the other man get up from the ground”



Architecture
• Sequence to Sequence – Video to Text(S2VT) [1]

A stack of two LSTM layers
• Encoding stage : Frames → Visual representation
• Decoding stage : Visual representation → Words

– A limitation to represent all information of a video into a fixed-length 
representation ℎenc
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[1] Venugopalan, Subhashini, et al. "Sequence to sequence-video to text." Proceedings of 
the IEEE international conference on computer vision. 2015.
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Architecture
• Attention mechanism [2]

– Achieve great performance on similar sequence-to-sequence tasks 
like machine translation

– Look over all the information included in the input frames
• Pay more attention to important frames and generate the proper word 

through a context vector
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[2] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.
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Architecture
• Attention in encoder-decoder network

– The decoder attends to difference parts of the encoder information
• Learn how to generate a context vector 𝑐𝑐𝑖𝑖 instead of a single fixed vector
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where   𝑒𝑒𝑖𝑖𝑖𝑖 = 𝛼𝛼(𝑠𝑠𝑖𝑖−1,ℎ𝑖𝑖)
𝛼𝛼(�) is alignment model which is trained



Architecture
• S2VT + Attention

– A stack of two LSTMs with 1024 hidden units each.
– The context vector is computed by hidden states of 2nd LSTM 

layer in encoder
– The context vector is contributed to 2nd LSTM layer in decoder
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Input Descriptor
• Multimodal fusion strategy

– Early fusion
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Input Descriptor
• Concatenation of visual, audio, detection information

– Visual feature (4096 dim)
– Audio feature (128 dim)
– Object detection (81 dim)
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Input Descriptor
• Visual feature (4096 dim) – VGG-16 [3]

– A pre-trained CNN is known as an effective visual feature extractor
• High-dimensional visual features are extracted from fc7 layer of pre-

trained VGG-16
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[3] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint 
arXiv:1409.1556 (2014).

𝑓𝑓𝑛𝑛: # of frame



• Audio feature (128dim) – VGGish [4]
– Extraction schema

Input Descriptor

12[4] Hershey, Shawn, et al. "CNN architectures for large-scale audio classification." Acoustics, Speech and Signal Processing (ICASSP), 
2017 IEEE International Conference on. IEEE, 2017.
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Input Descriptor
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• Object detection (81 dim) - Mask R-CNN [5]
– Maximum probability of each class among all region of 

interest(RoI)

– Classes : person, vehicle, dog etc

[5] He, Kaiming, et al. "Mask r-cnn." Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017.
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Technique
• Overfitting

– Data augmentation
• Additive random noise on input descriptor

– Dropout
• Apply on both LSTM (training phase)
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Decision criterion
• Description generation

– Choose a word with maximum probability at each timestep
– Concatenate words in all timesteps

• Matching and ranking
– Comparison : caption vs caption (Generation vs Reference)
– Measurement metrics : METEOR, BLEU
– Scoring : 1.2 * METEOR + BLEU
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Experiment
• Database

1. MSVD
2. M-VAD
3. MSR-VTT
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MSVD MVAD MSR-VTT

# video 1,564 4,951 6,074

# description 67,139 4,951 121,021

# avg description 40 1 20

# vocab 12,316 10,984 22,451

Table 1. Statistics about 3 dataset in our task.



Experiment
• Run types

– Run 1: VGG (no attention)
– Run 2: VGG (Primary)
– Run 3: VGG + Sound
– Run 4: VGG + Sound + Detection
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Results
• Generation – BLEU : 6 / 8
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Results
• Generation – Meteor: 5 / 8
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Results
• Generation – STS: 5 / 8
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Results
• Generation – CIDEr: 7 / 8
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Results
• Quantitative performance
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Run BLEU METEOR CIDEr STS

1 0.00181 0.13876 0.095 0.3402

2 0.00259 0.14782 0.105 0.3454

3 0.00159 0.13998 0.101 0.3508

4 0.00291 0.15006 0.097 0.3298



Results
• Example 1
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Run Description

1 A baby is playing with 

2 A man is playing with baby 

3 A woman is holding a baby while two men are sitting on the couch 
playing with a baby

4 Someone his to the floor

GT A small black girl dressed in a white top and black skirt making motions 
with her hands and fingers walking among many adults sitting down



Results
• Example 2
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Run Description

1 A man is dancing

2 A man is sitting on a bench and playing with the dog

3 A man is standing by a horse

4 A girl is waiting in a pink bag

GT A young man, dressed with an Abaya and Arabic outfit, is singing, to a 
donkey that is moving its head right and left, outdoors.



Results
• Matching & Ranking – Set A: 6 / 10
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Results
• Matching & Ranking– Set B: 5 / 10
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Results
• Matching & Ranking– Set C: 6 / 10
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Results
• Matching & Ranking – Set D: 5/ 10
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Results
• Matching & Ranking – Set E:5/ 10
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Conclusion
• Attention-based sequence-to-sequence model was 

effective to accurate description generation of video clips.

• Various combinations of visual feature, acoustic feature 
and detection result are used for an input descriptor of 
the model.
– The performance with additional features didn’t show great 

improvement

• The performance is improved when attention mechanism 
is exploited.
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Thank You!
Any questions?
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