
Person-Location Instance Search via Progressive Extension and Intersection Pushing

NII_Hitachi_UIT team at TRECVID2018 Instance Search Task

Zheng Wang and Shin'ichi Satoh National Institute of Informatics, Japan

INS Task in 2016-present

2016-present: find a specific person in a specific location

INS Task Data

- BBC EeastEnders (2013-present): drama series, "small world" many repeated instances (person, location, objects, ...)
- The BBC and the AXES project made 464 hours of the BBC soap opera EastEnders available for research in MPEG-4
- 244 weekly "omnibus" files from 5 years of broadcasts
 - 471527 shots
 - Average shot length: 3.5 seconds
 - Transcripts from BBC
 - Per-file metadata
- Represents a "small world" with a slowly changing set of:
 - People (several dozen)
 - Locales: homes, workplaces, pubs, cafes, open-air market, clubs
 - Objects: clothes, cars, household goods, personal possessions, pets, etc
 - Views: various camera positions, times of year, times of day

Comparison with task in 2013-2015

	2013-2015	2016-present	
Data Source	The same		
Topics	object / person / location	person + location	
query	Image + mask	Person: image + mask Location: 6-12 images Related video shots	
Characteristic	One condition	Two conditions together	
Difficulty	Instance with different scales and types	Persons / locations have different views Person and location influence to each other, can not be searched out simultaneously	

Example

This washing machine

The General **INS Task**

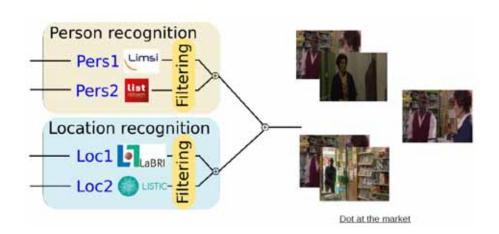
> This painting

The personlocation pair **INS Task**

Shirley in Market

Related Systems

The same routine:

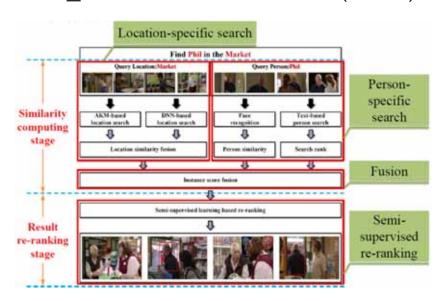

Location retrieval

Merge results

	Person retrieval	Location retrieval	Merge results
BUPT- MCPRL	face retrieval (dlib) person re-identification (Faster RCNN + fc layer feature) transcript-based	RootSIFT+AlexNet VGG-16 Places365	Peron guide location+ location guide person + random forest
IRIM	HOG detector + ResNet pre-trained on FaceScrub & VGG-Face Viola-Jones detector + FC7 of a VGG16 network	Bow + Filter out person Pretrained GoogLeNet Places365	Credits shots filtering Indoor/Outdoor shots filtering Shots threads filtering Late fusion
PKU_ICST	VGG-Face + Cosine + SVM+ Progressive training	AKM-based (6 kinds of BoW) DNN-based (VGGnet+GoogleNet+ResNet) + Progressive training	Peron guide location+ location guide person + highlight common clues Semi-supervised re-ranking

State-of-the-art Systems

IRIM at TRECVID 2017 (MAP = 0.4466)



Pers1: HOG detector + ResNet pre-trained on FaceScrub & VGG-Face

Pers2: Viola-Jones detector + FC7 of a VGG16 network

Loc1: Bow + Filter out person **Loc2**: GoogLeNet Places365

PKU_ICST at TRECVID 2017 (0.549)

Location-specific search: AKM-based (6 kinds of BoW) + DNN-

based (VGGnet+GoogleNet+ResNet)

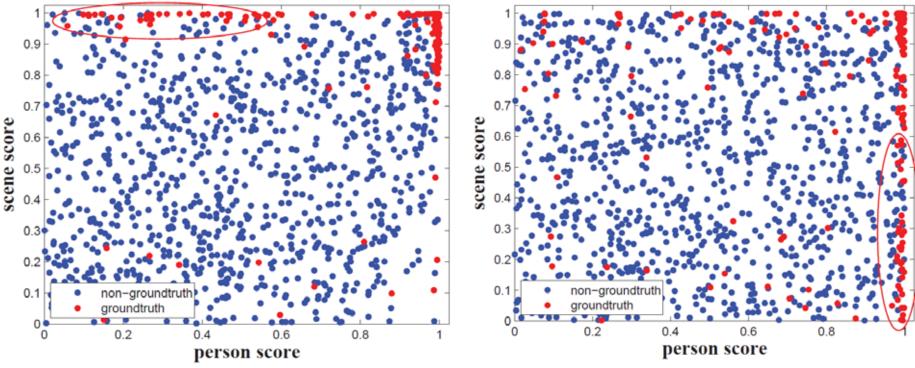
Person-specific search: VGG-Face + Cosine + SVM **Re-ranking**: Semi-supervised re-ranking method (fusion)

Difficulties

 additional difficulties for person + location : person search and location search are always in a dilemma.

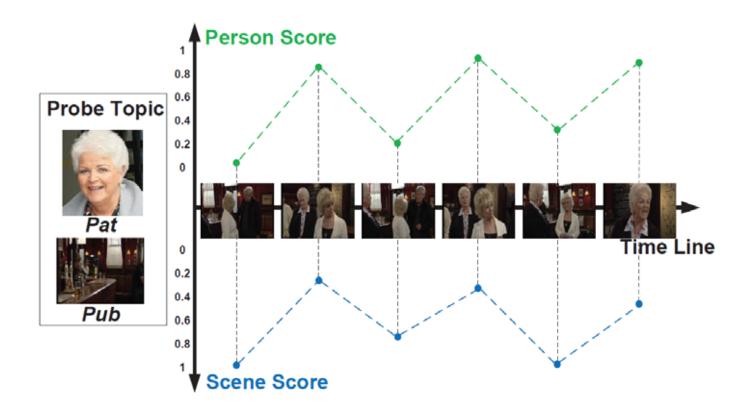
person faces are non-front or occluded

scenes are with low light or blur


although it is a wide-angle view scene, the person faces are very small

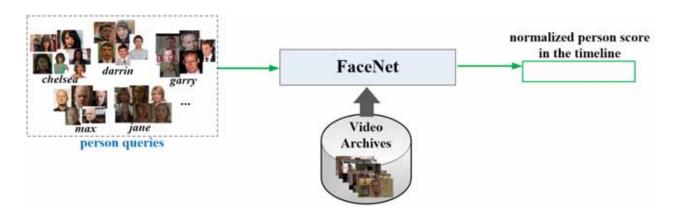
scenes are blocked by persons

Difficulties


 additional difficulties for person + location : person search and location search are always in a dilemma.

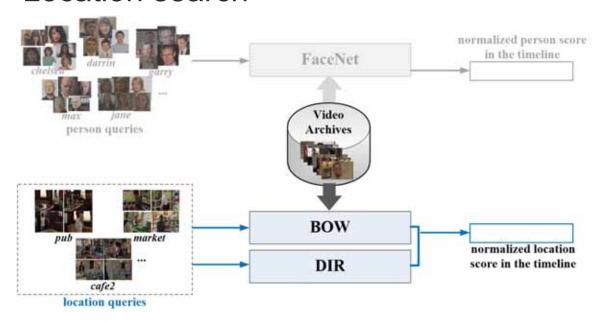
Topic 9170 in TRECVID INS 2016 high scene score V.S. low person score

Topic 9210 in TRECVID INS 2017 low scene score V.S. high person score


Motivation

An example for consecutive shots in a time slice. Although the shots contain the target person in the target location, the person and location scores are not always high simultaneously. Neighbor shots will be helpful.

Framework


Person search

- We use face cues to do person search.
- FaceNet [3] framework is used for face recognition.
 - Multi-task CNN [4] is utilized for face detection and alignment.
 - The network is trained using softmax loss with the Inception-Resnet-v1 model.
 - The training data is VGGFace2.
 - No BBC EeastEnders data is used for training.
- For each query person, we collect 10 face images with different views.
- We use max-pooling strategy to achieve the similarity between one shot and one query topic.
- The similarity scores are normalized to [0, 1].

Framework

Location search

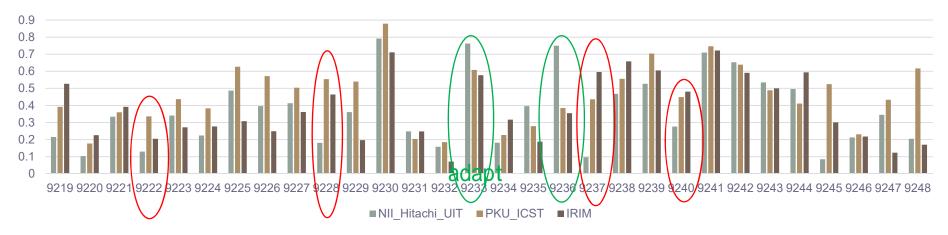
- · We use two kinds of routines to obtain the location similarity scores.
- BOW stands for the hand crafted based routine. We exploit the method used in TRECVID INS 2017.
- DIR [5] stands for the deep learning based routine.
 - For each query location, we use query extension to combine global features of all corresponding query images.
- We use max-pooling strategy to achieve the similarity between one shot and one query topic.
- The similarity scores are normalized to [0, 1].

Framework

Fusion

- The method includes multiple iterations, so that we can obtain top results progressively.
- For each iteration,
 - We first extend the shot scores with high neighbor shot scores.
 - We do intersection to get the top results.

Results


RUN-ID	MAP	Method
F_NII_Hitachi_UIT_1	0.369	Extension = 6 , Iteration = 50 , Shots before Intersection = 100
F_NII_Hitachi_UIT_2	0.362	Extension = 12 , Iteration = 69 , Shots before Intersection = 100
F_NII_Hitachi_UIT_3	0.317	Extension = 10 , Iteration = 5 , Shots before Intersection = 1000
F_NII_Hitachi_UIT_4	0.287	Extension = 10 , Iteration = 6 , Shots before Intersection = 1000
LNII_Hitachi_UIT_1	0.367	Delete Negative Samples from F_NII_Hitachi_UIT_1

Extension: the number of neighbor shots extended. Iteration: the times of intersection shots pushing.

Shots before Intersection: the number of shots selected before intersection.

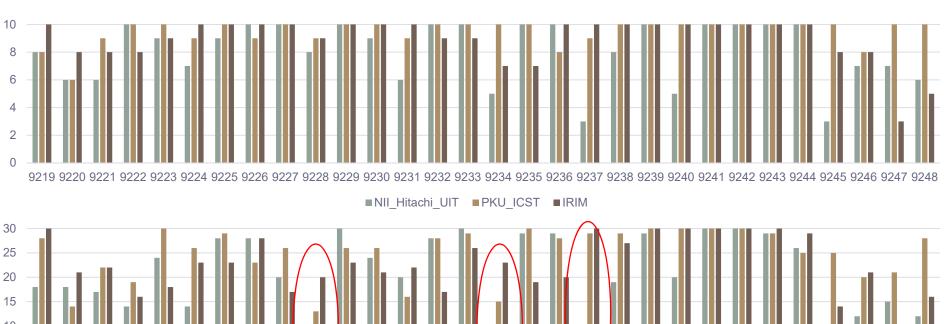
Extension should be fine-grained The iteration times should be large

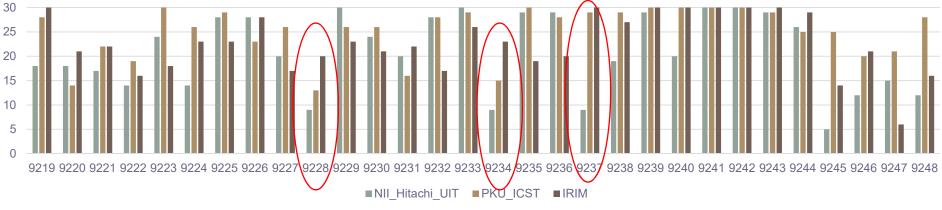
Results-AP

Good results:

9233 Mo+Laundrette
9236 Darrin+Laundrette

Bad results:


9222 Chelsea+Cafe2 9228 Garry+Cafe2 9237 Zainab+Cafe2 9240 Heather+Cafe2



Our method does not perform well in some scenes.

Our location search model does not adapt to the new INS domain.

Results-Hits at depth 10/30 in the result set

Bad results:

9228 Garry+Cafe2 9234 Darrin+Cafe2 9237 Zainab+Cafe2

For the top results, our method performs similar to the other methods.

Thanks