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ABSTRACT

This report presents our system developed for Ad-hoc Video Search(AVS) task in TRECVID 2019 as
Team ATL. In this AVS task, we apply a hybrid sequential encoder which make use of the utilities of
not only the multi-modal sources but also the feature extractors such as GRU, aggregated vectors,
graph modeling, etc. Our motivation is mapping video embedding and language embedding into
a learned semantic space. We observe that by combining different models and make use of their
utilities for feature extraction, we can take better advantage of large batches and hard examples. Our
models are trained on MSRVTT [1], IACC.3,TGIF and TRECVID2016 VTT datasets with different
hybrid visual and text architectures. The final ensemble model achieves 0.163 infap and won the first
place in this task.

Keywords Multi-modal learning · Video retrieval · Graph network · Sequential model

1 Introduction

In this report, we present our hybrid sequential model for Ad-hoc Video Search (AVS) task in TRECVID 2019 [2] as
team ATL. This is a task query video by text description in a zero shot manner.

Our hybrid sequential model is divided into two streams with visual module and text module. The two modules are
applied to extract the embedding features from both modal, and presented in a common space. By a common space
learning, the model can be trained.

There are lots of previous work has been proposed to solve this task with similar manner to our approach, VSE++ [3]
improve image-semantic embedding inference by hard example mining with a improved marginal ranking loss.
Word2VVec [4] learns to predict a deep visual feature of textual input based on multi-scale sentences. This type of
methods embed multi-modal inputs from different domains into same feature space and apply a common space learning.
Hence, to better represent the feature of different modal source input become essential.

In our work, we mainly focus on the optimization of visual and text embedding. Three different submodels i.e., graph
convolution model, sequence model and aggregated model, are applied along with their own strengths following a
control gate as an automatic adjustment strategy.

To further improve the performance of our model, we use additional training data from IACC.3, MSRVTT, TGIF, and
TRECVID2016 VTT. The result on MSRVTT is also reported along with each runs of our submit.

2 Related techniques and proposed Method

In this section, we first present a shot introduction about multi-modal learning, sequential models, followed by the
details of the hybrid model applied in this task.



Im
ag

e 
C

N
N

O
ne

-h
ot

 e
nc

od
in

gSentence 
one or 
more 

people 
driving 
snow 

Sequence 
Modeling

Aggregated 
Modeling

Gated 
CNN

Common 
Space 

Learning

Hybrid Sequence Encoder for Text Based Video Retrieval

Graph 
Modeling

feature 
vectors

Gated 
CNN

Gated 
CNN

Sequence 
Modeling

Aggregated 
Modeling

Gated 
CNN

Graph 
Modeling

Gated 
CNN

Gated 
CNN

Figure 1: Overall architecture of the method in the final submission

2.1 Multi-modal learning

Multi-modal learning is a challenging task as it has different type of inputs such as visual information, audio, text, etc.
There is a series of multi-modal learning methods tend to present the visual embedding and text embedding in a same
feature space. Methods such as Vse++ [3], [5],Devise [6], etc. present the image embedding feature and text embedding
feature in a same feature space. While there are methods [7, 8, 9] directly include video embedding features and text
embedding features in a unique feature space.

State-of-the-art method i.e., Dual-encoder method [9] applies a simple model to construct a common space and achieve
the best performance in video retrieval task via multi-modal common space learning. However, Dual-encoder method
only focus on current input video and its corresponding class, ignoring the whole distribution of the whole dataset with
different classes and samples. Due to the video clipping and editing, temporal information is not consistently reliable
and easy to mislead the encoder to properly extract the video feature from visual and text perspectives.

To solve this issue, in this competition, Vlad [10] based method is applied to embedded into the model so that the model
can have a more general view among all training data. Meanwhile, to strengthen the robustness of the encoder, a graph
convolutional network is included to better understand the hierarchy of the scenes in the video.

2.2 Sequential models applied for multi-modal learning

Video feature sequence classification is essentially the the task of aggregating video features, that is, to aggregate N

D-dimensional features into one D
0-dimensional feature by mining statistical relationships between these N features.

The aggregated D
0-dimensional feature is a highly concentrated embedding, making the classifier easy to mapping

the visual embedding space into the label semantic space. It is common using recurrent neural networks, such as
LSTM (Long Short-Term Memory Networks) [11] [12] [13] and GRU (Gated recurrent units) [14] [15], both are
the state-of-the-art approaches for many sequence modeling tasks. However, the hidden state of RNN is dependent
on previous steps, which prevent parallel computations. Moreover, LSTM or GRU use gate to solve RNN gradient
vanish problem, but the sigmoid in the gates still cause gradient decay over layers in depth. It has been shown that
LSTM has difficulties in converging when sequence length increase[16].There also exist end-to-end trainable order-less
aggregation methods, such as DBoF(Deep Bag of Frame Pooling) [17].
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2.3 Hybrid sequential model for our submission

In this section, the method applied in this competition is detailed introduced including the encoder for both visual
content and text content, followed by the loss function of the model. The overall architecture of the method in the final
submission is shown in Figure 1.

2.3.1 Visual encoder

The proposed method is based on Dual-encoder method [9] with three individual sub-model ensemble ’on-the-fly’
similar to the method proposed in [18]. As suggested in [9], the features of the video are extracted from different level.
Given a video input, an ImageNet11k [19] pre-trained network is applied for feature extraction. The feature for a input
video can be defined as FN ⇤D where N is the number of frames and D is the dimension of the extracted feature size
for a single frame. Each frame is obtained from every 0.5 seconds. The first level encoding feature is conducted with an
Mean pooling. The video feature is then represented by the average of features of all frames, and can be written as:
F1 = avg(FN ⇤D).

Second level embedding The second level embedding feature is composed by three parts named by F2g, F2s, F2a. As
shown in Figure 1, the feature extracted from pre-trained CNN model is put into three different modules, convolutional
graph model [20] F2g, sequence model [21] F2s, and aggregation model F2a.

For convolutional graph model, it can effectively learn the hierarchical information of the video among frames. We
observe that a typical video is composed by frames, scenes and events. After video clipping and editing, same event
may distributed in a discrete distribution over frames in the video. With this observation, we apply Graph convolution
and its forward passing to learn the whole video with a graph model. Frames, shots, events, scenes are treated as nodes
of a graph connected with a adjacent matrix. F2g can then be calculated as F2g = avg(G(F )) where F is the feature
from the pre-trained CNN, G is the GCN function.

Sequence model has been proved to be robust to extract temporal information. As an action is normally shown in
consecutive frames in a video, a sequence model can help to obtain a better representation of the videos with actions and
help to improve the performance of video search. Comparing to LSTM, GRU has less parameter and is easier to train.
In our model, we apply a bi-GRU model. bi-GRU has two GRU models with both direction on temporal dimension.
With the input feature F , two GRU models can provide two features: H1 = GRU(F,H) and H2 = GRU(F,H). The
final output from this model can then be calculated as F2s = avg([H1, H2]).

Aggregated model [22, 23] use global feature descriptor for the video which can aggregate evidence over the entire
video about both the appearance of the scene and the motion. This is achieved by first dividing the descriptor space
different cells using a vocabulary of “action words”. Each video descriptor is then assigned to one of the cells and
represented by a residual vector recording the difference between the descriptor and the anchor point. Vlad method can
view on top of the whole distribution of the training samples and aggregate the key features of all classes. The output is
a matrix V , where k � th column V [�, k] represents the aggregated descriptor in the k � th cell. The columns of the
matrix are then intra-normalized, stacked, and L2-normalized into a single descriptor v of the entire video. F2a is then
calculated as F2a = avg(V ).

Third level embedding Based on our observation, not all videos need all three models introduced above. A automatic
adjusting module is required. In our model, we add a gate convolution network behind each sub-model to control its
output. Gate convolution network add a gated linear unit(GLU) [24] as a gate control unit which can be represented as:

H = A ⇤ sigmoid(B)

A = X ⇤W + b

B = X ⇤ V + c

(1)

Where H is output of gate convolution,X is the output of each sub-model,W,b,V,c are learned parameters.

Hence,

F3g = GatedConvolution(F2g)

F3s = GatedConvolution(F2s)

F3a = GatedConvolution(F2a)

(2)
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The visual embedding can then be concluded as:

Vg = [F1, F2g, F3g]

Vs = [F1, F2s, F3s]

Va = [F1, F2a, F3a]

(3)

2.3.2 Text encoder

The text encoder is similar to the visual encoder as shown in Figure 1. For all text input, a one-hot encoding is applied.
Each word’s one hot vector is timed by the work embedding matrix to get the dense vector. Word2vec is applied to
initialize the embedding matrix [25] provided by [4], which is trained on English tags of 30 million Flickr images.
The rest of the model for text feature is similar to visual model and also composed by features from different level
[F1, F2, F3].

Sg = [F1, F2g, F3g]

Ss = [F1, F2s, F3s]

Sa = [F1, F2a, F3a]

(4)

Once the embedding feature from both modal is obtained, common space learning is applied as dual-encoder [9]. A
improved marginal ranking loss [3] is used and penalize the model according to the hardest negative examples.

3 Training, Results and Runs

In this section, we first introduce the training details of the model in the final submission along with the datasets that are
applied to train in this work. We details our understanding of different features related to this task(i.e., visual feature
and text feature) and the feature extractors applied on them respectively. The experiment results on msr-vtt dataset is
also reported followed by the details of four runs submitted for AVS task.

3.1 Training details

In this task, three models are tried along with different combination of them. Based on the test results and our experience
during testing. GRU based dual encoder [9] is sensitive to the data with strong sequence information. It performs well
when deal with data that the sequences are continuous such as short videos with continuous temporal information.
However, most videos in this dataset include discrete visual information, i.e., the visual clues are not evenly distributed
on the timeline due to the camera motion, vision block, or video clips. As a result, as shown in Tab. 3, GRU based dual
encoder does not show good performance on this dataset comparing to other methods. On the other hand, ’Netvald’
focus more on visual content and aggregate them from the whole distribution of the video features. The aggregated
vectors includes the views from different perspective of the video features with a big volume. Hence, it contains more
information about the video and can achieve best performance in the test on this dataset. Similar to Netvlad, Graph
based embedding method does not rely on the temporal information. It focuses on the hierarchical information of the
video content. Based on our experience, it performs well on long range videos and has worse result comparing to
Netvald as shown in Tab. 3. To make use of the utilities of all these models, we combine them together as a ’Hybrid’
model. These three models are combined and controlled by a control gate. As a combined model, it has bigger volume
and contains video feature from different clips, with different hierarchies and at different temporal points. This model
achieves good performance in this dataset in our experiment. It inspires us to apply a similar combined ’hybrid’ model
for this AVS task.

For ’Hybrid’ model:

V isual Feature = GRU +Netvlad+DCGN

Text Feature = GRU +Netvlad
(5)

For ’Hybrid2’ model:

V isual Feature = GRU +Netvlad+DCGN

Text Feature = GRU +Netvlad+DCGN
(6)
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Hybrid Components Hyper-parameters

GRU Visual: Hidden size: 1024, Bidirectional
Text: Hidden size: 512, Bidirectional

Netvlad Visual: Cluster size: 32
Text: Cluster size: 16

DCGN Visual: Layer nr.: 4, Filter size: 512, Kernel size: 5
Visual: Layer nr.: 2, Filter size 128, Kernel size: 5

Dual encoder Visual: Kernel size: 2-3-4-5-6
Text: Kernel size: 2-3-4
Table 1: Training details

3.2 Datasets for training

In this section, the datasets applied for training in this competition are introduced. The details of the datasets are listed
in Table 2 [26].

Dataset Name Clips Sentences
MSRVTT 10k 200k

TGIF 100k 120
IACC.3 335,944 30

TRECVID2016 VTT 200 400
Table 2: Training datasets

3.3 Visual feature

In this subsection, we include the understanding of video visual features with our visual feature extractor set up.

Deep convolutional neural network(CNN) has been proved to be a sufficient feature extractor for visual content in
many computer vision tasks such as object detection [27, 28], segmentation [29, 30], few-shot learning [31, 32], etc.
Currently, pre-trained networks on ResNet [33], inceptionNet [34], etc, are widely applied on different tasks. Current
pre-trained networks are mostly pre-trained on ImageNet dataset [35] with 1000 single-labeled classes and 1 million
images. Although it is sufficient for many tasks, 1000 classes is still quite limited comparing to millions of classes in the
wild which leads to the information loss of the feature extractor when it faces some novel tasks. To solve this problem,
fine-tuning is applied to fit the specific task. This method, however, is easy to lead to a over-fitting or under-fitting
model because of the volume and complexity of the fine-tuning dataset.

As datasets for videos are all have limited volume and complex information, we observe that it is not sufficient to
fine-tune the network on these dataset for initial feature extractor. As a result, in this competition, we applied a large
scale dataset [19] to train a ResNet152 network [33] as the feature extractor for the submit model. As a more generalized
dataset, it has been proved to fit many computer vision tasks even without fine-tuning [19]. This dataset includes
11,797,630 training images, covering 11,221 categories. Moreover, we include the model trained on labeled scene
data and concatenate this feature with the features obtained from the model trained on 11k dataset [19]. Based on the
experimental result, this strategy provides a more generalized and robust feature extractor to our task.

3.4 Results and Runs

3.4.1 Evaluation on MSRVTT [1]

We evaluated different methods and models on MSRVTT dataset [1] with different metrics i.e., R@K(K = 1,5,10),
Median rank(Med_r) and mean Average Precision(mAP). R@K is the percentage of test queries for which at least one
relevant item is found among the top K retrieved results. Med_r is the median rank of the first relevant item in the
search results. Higher R@K and mAP indicates better performance of the model, while the higher Med_r mean, the
worse the performance is.

As shown in Tab. 3, four different models are tested on MSRVTT dataset to help us to get the insight of the relation
between the performance on video tasks and different models.
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Methods Rank R@1 R@5 R@10 Med_r mAP
GRU [9] 4 7.7 22.0 31.8 32 0.155

Netvlad [22] 2 7.6 22.3 31.9 31 0.156
Graph [20] 3 7.5 21.9 31.0 34 0.153

Hybrid 1 7.8 22.5 32 31 0.158
Table 3: Results tested on MSRVTT dataset

3.4.2 Submission runs

For TRECVID2019 ad-hoc video search(AVS) task this year, we submit four runs and the result for each run is shown
in Tab. 4. As presented in the table, ’Hybrid’ model is better than ’Hybrid2’ model as text content has more stable
temporal sequential information and this information is more important than others. Hence, as shown in the table, GRU
based model performs better in text encoding. Based on these tests, the final version of the our model combines two
Hybrid models and acheives the best performance in this task.

Runs Method Results
1 Hybrid 0.161
2 (Hybrid + Hybrid2)/2 0.163
3 GRU 0.098
4 Hybrid2 0.157

Table 4: Results for four runs in TRECVID 2019 AVS task.

4 Conclusion

In this report, we address the problem of large scale video search via text. Methods including classical sequential
techniques and state-of-the-art baselines are analyzed based within the ad-hoc video search(AVS) task in TRECVID
2019. We, as team ATL, detailed present the model that achieve the first place in this task in TRECVID 2019, including
the architecture of the model and the training details of it. As a result, a hybrid sequence encoder can make use of the
utilities of different methods such as GRU, Vlad, GCN, and achieve good performance in this task.
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