
IMFD IMPRESEE at TRECVID 2019:

Ad-Hoc Video Search and Video To Text

Rodrigo Hernandez
1
, Jesus Perez-Martin

1,2
, Nicolas Bravo

1,2
,

Juan Manuel Barrios
1,3,4

, Benjamin Bustos
1,2

1Department of Computer Science, University of Chile, Santiago, Chile
2Millennium Institute Foundational Research on Data (IMFD), Santiago, Chile

3ORAND S.A., Santiago, Chile
4Impresee Inc., CA, USA

rohernan@dcc.uchile.cl, jeperez@dcc.chile.cl, nbravo@dcc.uchile.cl,
juan.barrios@impresee.com, bebustos@dcc.uchile.cl

Abstract

In this paper we present an overview of our participation in
TRECVID 2019 [1]. We participated in the task Ad-hoc
Video Search (AVS) and the subtasks Description Genera-
tion and Matching and Ranking of Video to Text (VTT) task.
First, for the AVS Task, we develop a system architecture
that we call “Word2AudioVisualVec++” (W2AVV++) based
on Word2VisualVec++ (W2VV++) [11] that in addition to us-
ing deep visual features of videos, also uses deep audio fea-
tures obtained from pre-trained networks. Second, for the VTT
Matching and Ranking Task, we develop another deep learn-
ing model based on Word2VisualVec++, extracting temporal
information of the video by using Dense Trajectories [16] and
a clustering approach to encode them into a single vector rep-
resentation. Third, for the VTT Description Generation Task,
we develop an Encoder-Decoder model incorporating semantic
states into the Encoder phase.

1 Ad-hoc Video Search

1.1 System Detail

For the ad-hoc video search evaluation, we propose a new
model called “Word2AudioVisualVec++” (W2AVV++), which
is an extension to the Word2VisualVec++ (W2VV++) [11]
model. W2VV++ is a new version of W2VV [6], a deep neu-
ral network that projects a given sentence into a visual feature
space. The W2VV++ model achieves this by vectorizing the
given sentence using a multi-scale encoding strategy, and then,
the encoding result is used by a multilayer perceptron (MLP)
to produce a feature vector r(s). During training, the network
tries to minimize the loss between a given video v and the sen-
tence s. The loss function used by this network is a marginal
ranking loss [8] that works as follows: given a video-sentence
pair (v, s) the loss is defined as:

l(v, s; ◊) = max
v

(0, – + S◊(v≠, s) ≠ S◊(v, s)) (1)

where v≠ is a hardest negative video sample of the
sentence s. This means that v≠ is the most dissimilar sample
of s in a mini-batch.

As W2VV++ only uses deep visual features of videos, we
propose W2AVV++ which also uses deep audio features of
videos. In order to represent a video, we create an audiovisual
vector formed by the concatenation of one visual vector and
one auditory vector, both obtained from the same video. The
architecture of this model consists of two branches: one visual
to work with the visual part of a video and an auditory one to
work with the audio track of the video.

On the visual branch, we sample frames from a video in a
uniformly manner, using an interval of 0.5 seconds. Using pre-
trained CNN models ResNet-152 used in [4] and ResNeXt-101
used in [12], we extract deep visual features per frame. Each
one of these features have 2,048 dimensions. Then, we obtain
two video-level features of 2,048 dimensions by mean pooling
over the frames of a video, each one corresponding to one of
the two CNN models. We concatenate both feature vectors
into a 4,096 dim vector and then use an extra fully connected
layer for video feature re-learning [7]. This approach is based
on the W2VV++ model.

On the auditory branch, we extract the audio track of each
video. Then, we extract deep audio features of each audio
track using pre-trained CNN models. In particular, we use
SoundNet [2] and AENet [14]. Each of these models are used
to extract a 1,024 dim feature vector per audio track and we
later concatenate them to obtain one 2,048 dim feature vector.

After obtaining one deep visual feature vector and one
deep audio feature vector per video (both of 2,048 dim), we
concatenate them creating a 4,096 dim vector and use an extra
fully connected layer to perform feature re-learning again.
This layer generates one final 2,048 dim deep audiovisual
feature vector.

Following the work done in W2VV++ for sentence
representation, we use its sentence encoder. This encoder
takes a given sentence and vectorizes it using three different
vectorization methods: Bag-of-Words (BoW), word2vec
and a Gated Recurrent Units (GRU) network. Each of this
techniques produces an encoding that is later concatenated
with each other and forwarded to a fully connected layer for
common space learning.

The proposed W2AVV++ model is trained with the MSR-
VTT [17] dataset. For testing, however, there was one particu-
lar problem which we had to overcome. The testing dataset for
AVS in 2019 was V3C1 [3] (which is drawn from a larger V3C
[13] video dataset), which is composed of 7,475 Vimeo shots.
This dataset is segmented for the task into 1,082,657 short
video segments. The problem is that only 586,730 of those
shots have a valid audio track (roughly 54% of the dataset),
while the other shots are only frames without audio tracks or
the audio track is too short thus SoundNet or AENet cannot
successfully extract a deep audio feature. In order to overcome
this problem, we follow these steps:

1. We train two models: one W2VV++ visual-only model
and one W2AVV++ audiovisual model, both trained with
MSR-VTT.

2. If a V3C1 shot allows the extraction of a deep audio fea-
ture vector (because the shot has a valid audio track),
then we calculate the audiovisual feature vector of the
video and also the visual-only feature vector (the one we
obtain from the visual branch described earlier).

3. If a V3C1 shot does not allow the extraction of a deep au-
dio feature vector, then we obtain the visual-only feature
vector of the video and we set its corresponding audiovi-
sual feature vector as 0 (more precisely, vector of zeros).
We save each visual feature in one matrix and each au-
diovisual feature in another one.

4. Then, for a given sentence, the W2VV++ model predicts
a visual feature and the W2AVV++ model predicts an
audiovisual feature. We implement the cross-modal sim-
ilarity between a given sentence and any shot from the
V3C1 dataset as the cosine similarity between the sen-
tence feature vector and the calculated video feature vec-
tor. For every sentence, we compute the cosine similar-
ity between the visual-only predicted feature and every
visual-only feature vector corresponding to each shot,
and then the cosine similarity between the audiovisual
predicted feature and every audiovisual feature vector
from each shot. This will generate two similarity ma-
trices, one from visual-only features and another from
audiovisual features.

5. Finally, we select the maximum between each entry in
these matrices, and then we retrieve a list of 1,000 videos
ranked by the cosine similarity in descending order.

RUN Mean infAP

Run 1 0.041
Run 2 0.046
Run 3 0.040
Run 4 0.038

Table 1. Mean inferred Average Precision obtained by each run
of our team.

1.2 Submissions

We submit four runs: Run 1 and Run 3 consist of the strategy
described in this paper. Run 2 and Run 4 consist in systems
based only in W2VV++ and are only used as baselines. The
details of these runs are:

• Run 1: Uses both visual (ResNet-152 and ResNeXt-
101) and audiovisual (visual + SoundNet + AENet) fea-
tures predicted from each query, using W2VV++ and
W2AVV++ models respectively as explained in this pa-
per. For the marginal ranking loss uses an alpha margin
of value – = 0.5.

• Run 2: Uses only visual features predicted from each
query, using W2VV++. This run works as a baseline
for Run 1. For the marginal ranking loss uses an alpha
margin of value – = 0.5.

• Run 3: The same as Run 1, but for the marginal ranking
loss uses an alpha margin of value – = 0.2.

• Run 4: The same as Run 2, but for the marginal ranking
loss uses an alpha margin of value – = 0.2. This run
works as a baseline for Run 3

The results from our 4 runs can be seen in Table 1. While
Run 2 (visual-only) achieves better overall results than Run 1
(audiovisual), Run 3 (audiovisual) achieves better results than
Run 4 (visual-only).

It is interesting to notice that for some queries, the proposed
audiovisual model achieves better results than only using the
visual features. For comparison, we report results from these
queries in Table 2:

Query
Run 1:

infAP

Run 2:

infAP

Run 3:

infAP

Run 4:

infAP

612 0.038 0.030 0.036 0.029
618 0.093 0.071 0.135 0.114
620 0.268 0.254 0.222 0.208
621 0.031 0.032 0.053 0.045
624 0.008 0.000 0.005 0.005
631 0.109 0.109 0.138 0.026
633 0.105 0.105 0.117 0.110
636 0.025 0.013 0.014 0.009

Table 2. Results of every run for certain queries.

We can see that for the queries 612, 618, 620 and 636 the
audiovisual models perform better than their visual-only coun-
terparts. For query 621, while Run 2 gets slightly better results
than Run 1, Run 3 performs better than Run 4. For query 624,
Run 1 gets an infAP of 0.008 and Run 2 gets 0.000, meaning
that the visual model did not retrieve any valid results. For
queries 631 and 633, Run 3 gets noticeable better results than
Run 4. These results suggest that our audiovisual proposal can
perform better in certain kinds of scenarios.

2 Video to Text: Matching and Ranking

2.1 System Detail

Similar to our approach in Ad-Hoc video search, for Matching
and Ranking subtask we use a deep learning model based on
W2VV++ [11] to encode visual and textual embeddings into a
common vector space. For this approach, rather than using au-
dio as an extra embedding of the video, we extend W2VV++ by
using Dense Trajectories [16] as a visual embedding to encode
temporal information of the video. We think that combining
the pretrained Resnet-152 [4] and Resnext-101 [12] descrip-
tors of W2VV++, with Dense Trajectories descriptors of the
video, we can extract spatial and temporal information from
it, respectively. We also transform both video and text into a
common space, rather than only from video to text.

Dense Trajectories [16] describes groups of pixels paths
across a fixed number of frames of the video, by using His-
togram of Oriented Gradients (HOG) and Histogram of Opti-
cal Flow (HOF) for pixel tracking. These trajectories are repre-
sented by a set of coordinates (x, y) where x, y œ [≠1, 1]. We
fix the trajectory length to 15 frames and the dense pixel size
to a 5x5 square of pixels.

Since a single video can generate thousands of dense tra-
jectories, we use K-Means clustering to find a fixed number
of codewords across the training videos and represent all the
dense trajectories of a video into a single histogram or Bag
of Words vector. Using the elbow method, we found that 800
codewords was more than enough to encode all Dense Trajec-
tories of the training dataset.

For the sentence representation, we use the same encod-
ing in Ad-hoc video search: a concatenation of Bag of Words,
Word2Vec and a trainable Gated Recurrent Unit layer.

fusions = BoW (s) || w2v(s) ||gru(s) (2)

For the video representation, define maxrs152(v) as the
max pooling of the set of pretrained ResNet-152 [4] vectors:
and maxrs101(v) the max pooling of the pretrained ResNext-
101 [12] vectors, we get a single vector representation of the
video by concatenating them with BoWdt(v): the Bag of
Words vector resulting from the clustering of the Dense Tra-
jectories of the video.

fusionv = BoWdt(v) || max
rs152

(v) || max
rs101

(v) (3)

Following the Matching and Ranking model of Dong et al.

for TRECVID 2017 [5], to transform the sentence and video

embedding into a common vector space, we use two fully-
connected layers with and ReLU activation function. We also
use batch normalization [10] in one of the submitted runs, e.g.
for the video branch of the model:

vÕ = ‡(BN(W1fusionv + b1))
#»v = ‡(BN(W2vÕ + b2))

(4)

where W1 are W2 trainable weight matrices for each fully-
connected layer with b1 and b2 their corresponding bias. BN
represents a batch normalization layer and ‡ the ReLU func-
tion.

Resnet
152

Resnext
101

MaxBoWBoW W2V GRU Max

A man driving
a car

Figure 1. Model used for Matching and Ranking subtask. This
configuration with batch normalization is used for the run 1,
but for the second run this feature is missing.

The loss function we use is a Triplet Ranking Loss function
defined as:

l(#»v , #»s ; ◊) = max
#»s ≠

(0, – + S(#»v , #»s ≠) ≠ S(#»v , #»s))) (5)

where (#»v , #»s) is a corresponding video-sentence pair, ◊ is the
set of parameters of the model, #»s ≠ is the hardest negative sen-
tence in the batch e.i., the sentence in the batch different to s

that is closest to v; – is a constant that sets the minimum mar-
gin desired between #»s and #»s ≠ and S is the cosine similarity
function. With this, if D is the training dataset, the optimiza-
tion process aims to minimize the sum:

min
◊

ÿ

(v,s)œD

l(v, s; ◊) (6)

We also follow Dong et al. [5] approach for the optimiza-
tion of equation 6. Using RMSProp [15] with initial learning
rate ÷ = 0.0003, weight decay “ = 0.9 and ‘ = 10≠9. We
use dropout on all fully-connected layers with p = 0.2. The
training process splits in half the learning rate if the validation
loss has not improved in 2 iterations, if it does not improve in
5 iterations the training process stops.

2.2 Datasets

We trained the model using MSR-VTT [17] which consists of
more than 150k of video-sentence pairs. Videos are extracted
from YouTube™ platform and annotations are made by Ama-
zon Mechanical Turk™ with a rigorous quality review from
the authors of the dataset. We use the same dataset for cross-
validation, randomly choosing 10% of the dataset as validation
for every epoch.

2.3 Submissions

For this task, we submitted 2 runs with different configurations
of the model. The first one uses batch normalization on the two
fully-connected layers of each branch, while in the second one
this feature is removed.

For a submission subset, to rank a video v with a set of
sentences {s}1..n we use the cosine similarity function S em-
ployed in the loss function (5), calculating the distance between
the vector representation of video in the common space #»v and
the vector representations of the set of sentences { #»s }1..n, and
sorting them in decreasing order to get the ranking list for v.

RUN A B C D E

Run 1 0.004 0.005 0.004 0.005 0.005
Run 2 0.015 0.017 0.015 0.016 0.018

Table 3. Mean Inverted Rank obtained by run and test subset
of our team in Matching and Ranking.

Table 3 shows the second run where there was not batch
normalization obtained better results in the subtask, with con-
sistent better score than the batch normalization approach. This
may be explained by unnecessary parameters the batch normal-
ization layer adds to the complexity of the model, overfitting it
on the training dataset.

3 Video to Text: Description Generation

3.1 System Detail

We develop a deep learning model based on an Encoder-
Decoder system. This model combines CNN and RNN ar-

chitectures in a framework that firstly uses a neural network
for visual recognition (the encoder), and secondly incorporates
a neural network for sequence generation (the decoder). The
model is an end-to-end trainable deep network model where
the two stages are learned simultaneously.

We mainly focused on saturating the semantic information
of the most important concepts. We used a Semantic Compo-
sitional Network (SCN) [9] to understand effectively individ-
ual semantic concepts for videos using 2D CNN and 3D CNN
to represent effectively the spatio-temporal visual content of
the video. For that, we select K important concepts from the
dataset and train a recurrent tag-model for each one. Then we
compose the recurrent states of all tag-models as input of our
recurrent encoder based into a bidirectional LSTM.

Figure 2. Encoder-Decoder model used for Description Gener-
ation subtask.

Acknowledgements

The authors of this paper would like to thank NIST and all
the coordinators of TRECVID for organizing this event. Spe-
cial thanks to Cees Snoek, Pascal Mettes and the University
of Amsterdam MediaMill team for sharing their pre-trained
ResNeXt-101 model with us.

References

[1] George Awad, Asad Butt, Keith Curtis, Yooyoung Lee,
Jonathan Fiscus, Afzal Godil, Andrew Delgado, Alan F.
Smeaton, Yvette Graham, Wessel Kraaij, and Georges
Qunot. Trecvid 2019: An evaluation campaign to
benchmark video activity detection, video captioning and
matching, and video search & retrieval. In Proceedings

of TRECVID 2019. NIST, USA, 2019.

[2] Yusuf Aytar, Carl Vondrick, and Antonio Torralba.
Soundnet: Learning sound representations from unla-
beled video. In Advances in Neural Information Process-

ing Systems, 2016.

[3] Fabian Berns, Luca Rossetto, Klaus Schoeffmann, Chris-
tian Beecks, and George Awad. V3C1 dataset: An eval-
uation of content characteristics. In Proceedings of the

2019 on International Conference on Multimedia Re-

trieval, ICMR 2019, Ottawa, ON, Canada, June 10-13,

2019., pages 334–338, 2019.

[4] Jianfeng Dong, Shaoli Huang, Duanqing Xu, and
Dacheng Tao. Dl-61-86 at trecvid 2017: Video-to-text
description. TRECVID Workshop, 2017.

[5] Jianfeng Dong, Shaoli Huang, Duanqing Xu, and
Dacheng Tao. Dl-61-86 at trecvid 2017: Video-to-text
description. In TRECVID Workshop, 2017.

[6] Jianfeng Dong, Xirong Li, and Cees G. M. Snoek. Pre-
dicting visual features from text for image and video cap-
tion retrieval. IEEE Trans. Multimedia, 20(12):3377–
3388, 2018.

[7] Jianfeng Dong, Xirong Li, Chaoxi Xu, Gang Yang, and
Xun Wang. Feature re-learning with data augmentation
for content-based video recommendation. In 2018 ACM

Multimedia Conference on Multimedia Conference, MM

2018, Seoul, Republic of Korea, October 22-26, 2018,
pages 2058–2062, 2018.

[8] Fartash Faghri, David J. Fleet, Jamie Kiros, and Sanja
Fidler. VSE++: improving visual-semantic embeddings
with hard negatives. In British Machine Vision Confer-

ence 2018, BMVC 2018, Northumbria University, New-

castle, UK, September 3-6, 2018, page 12, 2018.

[9] Zhe Gan, Chuang Gan, Xiaodong He, Yunchen Pu, Ken-
neth Tran, Jianfeng Gao, Lawrence Carin, and Li Deng.
Semantic Compositional Networks for Visual Caption-
ing. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1141–1150. IEEE, 7
2017.

[10] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[11] Xirong Li, Jianfeng Dong, Chaoxi Xu, Jing Cao, Xun
Wang, and Gang Yang. Renmin university of china
and zhejiang gongshang university at trecvid 2018:
Deep cross-modal embeddings for video-text retrieval.
In TRECVID Workshop. https://github.com/li-xirong/avs,
2018.

[12] Pascal Mettes, Dennis C. Koelma, and Cees G. M. Snoek.
The imagenet shuffle: Reorganized pre-training for video
event detection. In Proceedings of the 2016 ACM on In-

ternational Conference on Multimedia Retrieval, ICMR

2016, New York, New York, USA, June 6-9, 2016, pages
175–182, 2016.

[13] Luca Rossetto, Heiko Schuldt, George Awad, and Asad A
Butt. V3c–a research video collection. In International

Conference on Multimedia Modeling, pages 349–360.
Springer, 2019.

[14] Naoya Takahashi, Michael Gygli, and Luc Van Gool.
Aenet: Learning deep audio features for video analysis.
IEEE Trans. Multimedia, 20(3):513–524, 2018.

[15] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-
rmsprop: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural networks for ma-

chine learning, 4(2):26–31, 2012.

[16] Heng Wang, Alexander Kläser, Cordelia Schmid, and
Liu Cheng-Lin. Action recognition by dense trajectories.
2011.

[17] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. MSR-VTT: A
large video description dataset for bridging video and lan-
guage. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,

June 27-30, 2016, pages 5288–5296, 2016.

