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Abstract

We propose a video analysis system detecting activities in surveillance scenarios
which wins Trecvid Activities in Extended Video (ActEV1) challenge 2019. For
detecting and localizing surveillance events in videos, Argus employs a spatial-
temporal activity proposal generation module facilitating object detection and
tracking, followed by a sequential classification module to spatially and temporally
localize persons and objects involved in the activity. We detail the design challenges
and provide our insights and solutions in developing the state-of-the-art surveillance
video analysis system.

1 Introduction

In recent years, the volume of video data from widely-deployed surveillance cameras has grown
dramatically. However, camera network operators are overwhelmed with the data to be monitored, and
usually cannot afford to view or analyze even a small fraction of their collections. For enabling timely
response for critical surveillance events, there is thus strong incentive to develop fully-automated
methods to identify and localize activities in extended video collections and provide the capability
to alert and triage emergent videos. These methods will alleviate the current manual process of
monitoring by human operators and scale up with the growth of sensor proliferation in the near future.

An efficient and effective functionality to spatially and temporally detect or localize human activities
is central in surveillance video analysis. With the availability of large-scale video surveillance dataset
such as VIRAT Oh et al. (2011), the Activities in Extended Videos Prize Challenge (ActEV-PC)
seeks to encourage the development of real-time robust automatic activity detection algorithms in
surveillance scenarios. Specifically, an activity is defined to be “one or more people (or vehicle)
performing a specified movement or interacting with an object or group of objects”. Figure 1
illustrates three “talking phone” and “vehicle turning” activities.

For spatial object detection, as the common practice since Faster R-CNN Ren et al. (2015), region-
based object detectors employ proposal generation and classification networks. A few recent work
applied this two-stage architecture for temporal action localization Dai et al. (2017); Xu et al. (2017);
Lin et al. (2018); Chang et al. (2017b), and demonstrated competitive performance. In particular,
R-C3D network Xu et al. (2017) closely follows the original Faster R-CNN but in the temporal

1https://actev.nist.gov/
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Figure 1: Activity detection in video surveillance scenarios.

domain. However, these methods do not generalize to a more challenging spatial-temporal activity
detection problem, which is the central scenario for surveillance video analysis.

Figure 2: System architecture of Argus.
To tackle the challenging spatial-temporal activity detection problem, we apply a divide-and-conquer
strategy built on Chen et al. (2018); Chen et al. (2019). We first generating a sparse set of class
agnostic spatial-temporal proposals from the input video, followed by classifying and temporal
localizing the action categories for each proposal. The proposal generation includes object detection,
tracking to generated spatial-temporal tubes covering most activity priors for classification. Unlike
prior spatial detection Ren et al. (2015) or temporal localization work Dai et al. (2017); Xu et al.
(2017); Lin et al. (2018); Chang et al. (2017a), we incorporate domain knowledge to explicitly model
human-object interaction in both spatial and temporal domains. We then employ sequential classifiers
to temporally localize activities in the proposals. Our system employs and improves multiple recent
methods in the sub-modules and achieves the state-of-the-art results for activity detection in video
surveillance scenarios. We design a parallel framework to maximize the computation efficiency for
large-scale surveillance video analysis. We term our spatial-temporal activity detection system Argus.
We have dockerized Argus to enable SOTA surveillance video analysis with one script. In a nutshell,
our contribution is twofold:

1. Argus yields SOTA results for spatial-temporal activity detection in video surveillance
scenarios.

2. We open-source Argus to reproduce our results and accelerate research for surveillance
video analysis.

2 The System

2.1 System Architecture

The overall system architecture is depicted in Fig. 2. We employ a two-stage system for activity
detection. In the first stage we pre-process videos to generate event proposals to spatially and
temporally localize candidates of activities. In the second stage, we extract features and perform
temporal classification and postprocess to generate the activity detection outputs. The system is
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designed to achieve high recall in the first stage by increasing the proposal coverage whereas in the
second stage the classification model aims to improve the precision. Argus is composed of three
parts: (i) Activity proposal generation (ii) Classification (iii) Postprocess.

For Activity proposal generation, object detection model is first applied to detect person and vehicle
objects. We then create tracklets and generate spatial-temporal activity proposals. To classify the
activities in the proposals, we extract features and perform temporal classification to temporally
localize activities. Additionaly, a scene detection model is applied to provide scene information as
the side-information for model switch. Lastly, results from multiple activity classifiers are filtered
then ensembled to generate the final outputs. In the following section we first introduce our pipeline
implementation and elaborate individual module design.

2.2 Parallel Video Analysis Framework

The dataset is processed as chunks of videos. For each chunk, Argus operates parallel video analysis
in the chunk.

2.2.1 Module Parallelization

Different modules require different amounts of CPU and GPU resources. For example, the proposal
generation module (P) in Fig. 2 relies on the CPU resource, and the subsequent feature extraction
module (F) mainly depends on the GPU resource. Based on the above reason, we can parallelize
the P module and the F module. Then we can largely reduce the additional time cost CP brought
by module P. Note that the length of time for extracting features by F is much longer than that for
generating proposals of a video by P. Thus, the CP approximately equals to the cost of processing
only one video by P, which means that the F module doesn’t need to wait for generating proposals
except for those of the first video. Notably, CP will not increase as the number of videos increases.

2.2.2 Pipeline Parallelization

Our system is a GPU-wise parallel computation system. In the experiments, we find that it is hard
to predict and allocate the resource before we analysis the videos. For example, a short but dense
video (i.e., a video with many proposals of events in a short time) may cost more than a long but
sparse video. Therefore, we develop a GPU management subsystem to dynamically allocate GPU for
pipelines. In this system, the GPU management system will monitor the GPU usage and dynamically
create a new pipeline when an old one is finished. Please refer the documentation in our open-source
repository for more details.

3 The Modules

3.1 Event Proposal Generation

The events of concern in ActEV are summarized in Table 1. These events involve either person or
vehicle object, we use this prior knowledge to build the event proposal module starting from the
object detection step. The output of this step is person and vehicle bounding box for each frame.
The immediate natural next step is to associate detected object across frames, which is tracking.
The output of this step is person tracklet and vehicle tracklet. Finally, we derive event proposal by
designing heuristics on the tracklets. The output of this step is event proposal.

3.1.1 Object Detection

We utilize faster RCNN Ren et al. (2015) with feature pyramid network Lin et al. (2017) on ResNet-
101 He et al. (2016) as the backbone for object detection, in which RoIAlign is used to extract features
for Region-of-Interest. We apply object detection on every k frame from the videos. Full resolution
images are input to the model and we fine-tune our model using the full 15 object class annotation in
the the VIRAT dataset.
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3.1.2 Tracking

We utilize deep SORT Wojke et al. (2017) to generate tracklets by associating detected objects across
frames. We follow a similar track handling and Kalman filtering framework Wojke et al. (2017).
We use bounding box center position (u, v), aspect ratio �, height h and their respective velocities
in image coordinates as Kalman states. We compute the Mahalanobis distance between predicted
Kalman states and newly arrived measurement to incorporate motion information. For each bounding
box detection, we use the feature obtained from object detection module as a appearance descriptor.
We compute the cosine distance between tracks and detections in appearance space. To build the
association problem, we combine both metrics using a weighted sum. An association is defined
admissible if it is within the gating region of both metrics.

Type Events/Activities
Person
only

Transport_HeavyCarry, Riding, Talking, Activity_carrying, Special-
ized_talking_phone, Specialized_texting_phone, Entering, Exiting, Closing,
Opening

Vehicle
only

Vehicle_turning_left, Vehicle_turning_right, Vehicle_u_turn

Interaction Open_Trunk, Loading, Closing_trunk, Unloading
Table 1: The events categorization according to proposal types on the VIRAT dataset.

3.1.3 Spatial-Temporal Proposal Generation

After obtaining the single object trajectories for person and vehicle respectively in videos, we generate
event proposal. The event proposal can be treated as a sequence of bounding boxes corpped from
each frame. We divide the events into three categories, namely: person only proposal, vehicle
only proposal and person-vehicle interaction proposal. The categorization for the events on the
VIRAT dataset is illustrated in Table 1. 1) The person and vehicle only proposals contains only
events happened on a single object (i.e., either a person or a vehicle). 2) To generate proposals of
person-vehicle interaction, we associate individual person and vehicle to model their interactions.
We use a spatial-temporal regularization schema to obtain the interaction proposals. An intuitive
illustration is shown in Figure 3 for event “person entering vehicle”. Let the blue curve be the person
trajectory and the red curve be the vehicle trajectory. The x-axis is the time dimension and the
y-axis is the spatial dimension. In the black dashed line region, the spatial distance between person
and vehicle trajectories are consistently close enough in space within the temporal window [x1, x2].
Finally, we use this regularization to generate event proposals from two object trajectories.

person trajectory

vehicle trajectory

spatial  
y

temporal 
x

Δ𝑦 < 𝜃

𝑥1 𝑥2

spatial-temporal 
regularization

Figure 3: Illustration of the spatial-temporal regularization to obtain interaction proposals based on
person and vehicle trajectories.
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mAP

I3D-RGB 66.06 35.26 17.26 23.14 12.54 16.28 40.48 28.95 15.11 48.29 60.99 33.46 55.47 48.33 52.14 23.35 1.29 0.28 32.15
I3D-FlowFB 63.64 38.33 38.57 48.03 22.40 51.66 40.99 14.98 15.11 57.73 68.44 35.49 64.55 65.05 41.26 19.25 1.33 0.18 38.16
I3D-FlowTVL1 58.38 45.18 46.50 57.91 21.01 51.75 47.02 21.37 27.45 55.99 70.65 29.40 58.41 79.94 45.63 23.68 2.44 0.36 41.28
Fusion 82.24 69.97 51.82 69.24 35.58 64.10 66.51 25.26 43.99 66.74 78.47 37.36 74.18 80.76 63.73 27.20 1.60 0.37 52.17

Table 2: Activity recognition results on the VIRAT testing set. (Higher is better)

3.2 Spatial-Temporal Classification

3.2.1 Feature Extraction

We learn proposal-augmented I3D-Flow and I3D-RGB features by fine-tuning I3D Carreira and
Zisserman (2017) models for activity recognition on VIRAT. The base models are pre-trained on
ImageNet, Kinetics-600 Kay et al. (2017), and Charades Sigurdsson et al. (2016). We fine-tune on
the VIRAT dataset with the annotated positive event proposals and 5-times non-trivial background
proposal as the negatives. We extract raw RGB and two types of raw optical flow frames (TVL1
and Farneback) from the spatial-temporal proposals for fine-tuning. The proposals are augmented
by randomly scaling proposal in the temporal and spatial domain. After fine-tuning, we use the last
convolutional layer as the feature for classification.

3.2.2 Spatial-Temporal Classification

We utilize a bi-directional LSTM Hochreiter and Schmidhuber (1997) to perform temporal(sequential)
classification to localize activities within spatial-temporal proposals. The spatial-temporal proposal
generation in Sec 3.1.3 aims to cover most of the possible proposals (high recall) while the bi-LSTM
classifier aims to achieve high precision. For training we temporally extend the proposals of positive
events to supervise the classification model to capture the activity boundaries. Different from BSN Lin
et al. (2018), our model predict activities and locate activities boundaries simultaneously.

3.2.3 Scene Detection

To determine the scene (parking area, crossroads, etc) of a video, we apply a ResNet-101 He et al.
(2016) for classification. The frames of the first 20 seconds are extracted, predicted, and then averaged
to determine the scene for classifier selection. The detailed scene-classifier mapping could be found
in our open-source repository.

3.3 Postprocess

3.3.1 Proposal Filtering

After classification and localization, the candidate proposals may have large spatial and temporal
overlap. Thus we adopt spatial-temporal non-maximum suppression (NMS) to avoid redundant
candidates. Empirically we find that the optimal IoU threshold set for suppression in NMS is high,
which implies that our framework can generate less redundant proposals.

3.3.2 Fusion

To obtain the best performance, we apply late fusion in the postprocess stage. We take the prediction
scores from individual proposals and heuristic average them if there intersection-over-union (IoU) is
greater than a threshold. We repeat this process iteratively until the predictions converge. We fuse the
models with a I3D-RGB model, and two types of I3D-Flow models.
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Experiments mean-Pmiss@0.15rfa
RC3D Xu et al. (2017) 91.30
Team SRI 80.46
Team IBM and MIT 75.65
Team UMD 75.03
Team UCF 75.00
Argus (RGB) 79.25
Argus (I3D-FlowTVL1) 71.52
Argus (Fusion) 60.47

Table 3: Activity detection results on the VIRAT testing set. (Lower is better). The best result is
marked in bold.

Name Model Framework GPU
Object Detection CNN TensorFlow Yes
Tracking D-SORT TensorFlow Yes
Proposal Generation original Python No
Feature Extraction CNN Pytorch Yes
Activity Classification RNN TensorFlow Yes
Filtering original Python No
Fusion original Python No

Table 4: Implementation Detail. The model marked with ’original’ is original implemented in this
system.

4 Experiments

4.1 Experimental Setup

We conduct experiments on a subset of the widely used VIRAT Oh et al. (2011) dataset which is of
concern in the ActEV challenge. This subset consists of 18 event types distributed throughout 29
hours of videos. The videos are recorded using multiple models of HD video cameras at 1080p or
720p and the frame rates range between 25 and 30 Hz. The stationing cameras are mostly at the top
of buildings and the view angles of cameras towards dominate ground planes range between 20 and
50 degree. The detailed events of concern can be found in Table 1.

For activity recognition, we use mean average precision (mAP) as the metric (higher is better). We
use the spatial-temporal proposals defined in the VIRAT for evaluation. For activity detection, we
use the Pmiss@ metric (lower is better) defined in the ActEV challenge 2. The system performance is
evaluated using Pmiss(⌧) and RateFA(⌧) which are defined as

Pmiss(⌧) =
8 +NMD(⌧)

10 +NTrue_Instance
, (1)

and
RateFA(⌧) =

NFA(⌧)

Video_Duration_In_Minutes
. (2)

Here, ⌧ is the activity presence confidence score threshold, Pmiss(⌧) is the probability of missed
detections at ⌧ and RateFA(⌧) is the rate of false alarms at ⌧ . NMD(⌧) is the number of missed
detections at ⌧ , NFA(⌧) is the number of false alarms at ⌧ , and NTrueInstance is the number of the
true instances in the sequence. For ActEV-PC evaluations, the system performance will be evaluated
using Pmiss at RateFA = 0.15 for activities.

The implementation details is listed in Table 4. We use the data and the annotations defined in the
standard training split in VIRAT to train or fine-tuning individual modules. The best model in the
validation split is used for model selection. We report the activity recognition (spatial-temporal
proposals are given) and activity detection (spatial-temporal proposals are generated by Argus) on
the testing split.

2https://actev.nist.gov/
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Figure 4: System output visualization.

4.2 Activity Classification Results

Table 2 summarizes the result of activity recognition on VIRAT. As can be seen, the augmented optical
flow I3D models greatly outperform the RGB model in 13/18 events for TVL1 and Farneback. Events
with smaller spatial proposals such as activities involving cell phones are harder to be recognized.
Complex activities, which includes reasoning over multiple objects (i.e., “loading”, “transport heavy
carry”) and longer temporal (i.e., “Vehicle u-trun”) are also challenging. With a cost of roughly 13x
computation time, optical flow with TVL1 algorithm yields better performance over Farneback. The
reason behind is that the I3D model weights are pre-trained TVL1 flow on Kinetics and Charades.
The late fusion of the three models delivers the best activity recognition performance.

4.3 Activity Detection Results

For the challenge, we prepare our system on a four GPU ( NVIDIA 1080Ti) cards machine with
128G memory and one 32-core CPU. The running time is 39,688 seconds on 246 test videos with the
total duration around 6,731 seconds.

Table 3 presents the comparisons of mean-Pmiss@0.15rfa results of activity detection on VIRAT test
dataset (reported on the official leaderboard 3). As can been seen, Argus outperforms other teams by
a large margin. We observed that the fusion of RGB and Flow_TVL1 feature reports the best result
of 60.47 in mean-Pmiss@0.15rfa.

5 Conclusion

We presented Argus, the state-of-the-art system for spatial-temporal activity detection in video
surveillance scenarios. We conducted thorough experiments on the VIRAT dataset. The system
presented in this paper can be easily adapted to other real-world applications. We hope that open-
sourced Argus would accelerate research in the field of activity detection in surveillance videos.
Please refer to https://github.com/wenhel/argus for the detailed documentation, scripts, and the
dockerized video analysis tools.

3https://actev.nist.gov/prizechallenge#tab_leaderboard. Our Team is named as MUDSML
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Abstract

We participated in one of the two types of Instance Search task in TRECVID 2019:
Fully Automatic Search, without any human intervention. Firstly, the specific
person and action are searched separately, and then we re-rank the two sorts of
search results by ranking the one type scores according to the other type, as well as
the score fusion. And thus, three kinds of final instance search results are submitted.
Specifically, for the person search, our baseline consists of face detection, alignment
and face feature selection. And for the action search, we integrate person detection,
person tracking and feature selection into a framework to get the final 3D features
for all tracklets in video shots. The official evaluations showed that our best search
result gets the 4th place in the Automatic search.

1 Task Description

In TRECVID 2019 [1], a query type in Instance Search task is proposed to retrieve specific person
doing specific actions [2]. And it also derives two submission types, i.e., Fully Automatic (F) runs
and Interactive (I) runs, depending on human intervention is involved or not. In detail, 30 queries are
released, and each of them includes 4 example images for person containing the person of interest
and example videos for the corresponding action. Besides, a mass of video shots segmented from
BBC Eastenders test videos are given as the retrieved samples, while the type of training data can be
chosen according to official requirements by ourselves. And all teams should demonstrate the types
of training data by the notations of ‘A’ and ‘E’, in which “A” means video examples are not used
while “E” is the opposite.

We only focus on the Fully Automatic search and the video examples are also used in our method.
And thus, Table 1 shows all of our submissions and the evaluation results (MAP) according to
different ranking strategies. Also, the comparisons with other teams are illustrated in Table 2 under
the same setting, and we can find our team gets the 4th place in Fully Automatic task.

2 Our Method

In this time, we focus on the Fully Automatic runs and design two baselines for person search and
action search respectively, and also three re-ranking strategies are used to get the final submissions
[3].

2.1 Person Search

For person search, as shown in Figure 1, we firstly utilize the MTCNN model [4] to detect and crop
the faces from frames, and then the cropped faces are fed into the face recognizer VGG-Face2 [5] for
feature selection. Finally, we use the Cosine Distance to measure the similarities between queries and
retrieved samples.



Table 1: Results of our submissions

Task Type Submission ID MAP Ranking Type

F
Inf_run1_E 0.017 Person-Based
Inf_run2_E 0.013 Action-Based
Inf_run3_E 0.001 Fusion-Based

Table 2: Comparison with other teams at the same setting

Task Type Team+Submission (best) MAP

F

PKU_ICST + run_F_E 0.239
BUPT_MCPRL + run_F_E 0.119

NII_Hitachi_UIT + run_F_E 0.024
Inf + run_F_E (ours) 0.017
WHU_NERCMS + run_F_E 0.017

HSMW_TUC +run_F_E 0.009

2.2 Action Search

For action search, from Figure 2, we can find that the Faster-RCNN [6] model pre-trained on
MSCOCO dataset [7] is firstly used for person detect. In order to include the actions and objects
completely, the proposals generated by person detection are expanded by 15% to the periphery. And
then the tracklets for each person are generated via DeepSort [8] Tracking algorithm. After that, we
fine-tune the RGB benchmark of I3D [9] model on the combination Charades dataset [10] and the
offered video shots to extract the features of tracklets. Similarly, the Cosine similarity is used for
action ranking.

2.3 Re-Ranking

Since we have got the person ranking and action respectively, three re-ranking methods are proposed
to obtain the final results. Here we regard the query, ‘Ian + Holding_Glass’, as an example to describe
these strategies. (1) Person-Search-Based: this strategy aims at using the person ranking to re-rank
the action search rank list. We first select the shotID list about ‘Ian’ from person search list and the
ShotID list about ‘Holding_Glass’ from action search list, respectively. And then the intersection
of these two shotID lists. Finally, the final rank list is based on the intersection from the selected
person search rank list. (2) Action-Search-Based: the first step is same with Person-Search-Based
strategy, while the third step is based on the intersection from the selected action search rank list. (3)
Fusion-Based: it is re-ranked by the average similarities between person search and action search.

Figure 1: Framework of the face feature selection
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Figure 2: Framework of the action feature selection

3 Conclusion

We designed the person search and action search baseline for feature selection, and three re-ranking
strategies were used for final submission. By doing the INS task in TRECVID 2019, we find that
many target people only have side faces or it is very blurred in the testing dataset. So in future work,
we will add super-resolution processing and person ReID technology to improve the accuracy of
person search.

From the evaluation results, we can find the Person-Search-Based strategy got a better performance
compared with the other two results. It demonstrated that our method can get accurate result for
person search, while action search baseline can not reach the accurate representations for actions.
Thus, we will also improve the action search baseline in future works.
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