

Image Data, Video Data and Both in VTT Model Training Video-to-Text Task in TRECVID 2019

Jorma Laaksonen, PicSOM Team

Department of Computer Science Aalto University School of Science Espoo, Finland

November 13th, 2019

Background

Motivation

Approach

Results

Analysis

People

- Jorma Laaksonen
- Héctor Laria Mantecón
- (Danny Francis & Benoit Huet of EURECOM)

Lessons from TRECVID 2018

- We used only cross-entropy training, others did better with reinforcement learning
- Validation with VTT 2016 data was not able to select the best models
- Training with COCO image dataset gave equally good results as with video datasets
- We could move from old Theano-based code to new PyTorch-based

Development of scores

Work between TRECVID 2018 and 2019

- Implemented self-critical reinforcement learning
- Studied methods to combine image and video datasets and features
- Also wanted to study optimal combination of different video datasets

Background

Motivation

Approach

Results

Analysis

TGIF and COCO datasets

Statistics:

- TGIF: 125,713 videos with 125,713 captions
- COCO: 123,287 images with 616,767 captions

Which approach would be the best:

- 125,713 video feature vectors and 125,713 captions
- 123,287 image feature vectors and 616,767 captions
- 249,000 image feature vectors and 742,480 captions
- 249,000 image and video feature vectors and 742,480 captions

Videos to image features and vice versa

- Image features can be extracted from videos in multiple ways, e.g.
 - use only the middle frame
 - max or mean pool features of multiple or all frames
- Genuine video features such as I3D cannot be extracted from still images
 - we used fake video features for COCO images
 - average of all video features in TGIF was used assigned to all COCO images
- The final feature vector was concatenation of

TGIF videos: I3D video feature
COCO images: constant average I3D feature

ResNet image feature of middle frame ResNet image feature

Background

Motivation

Approach

Results

Analysis

Methodology

- COCO image and TGIF video datasets in training
- model validation and early stopping with VTT 2018 dataset
- ResNet-152 CNN image and I3D video features
- fake I3D video features for COCO images
- "DeepCaption" LSTM language model decoder in PyTorch
- cross-entropy loss training in the beginning
- self-critical reinforcement learning in the end

Submissions

We submitted four runs:

- PICSOM.1-MEMAD.PRIMARY: uses ResNet and I3D features for initialising the LSTM generator, and is trained on MS COCO + TGIF using self-critical loss,
- PICSOM.2-MEMAD: uses I3D features as initialisation, and is trained on TGIF using self-critical loss,
- PicSOM.3: uses ResNet features as initialisation, and is trained on MS COCO + TGIF using self-critical loss,
- PICSOM.4: is the same as PICSOM.1-MEMAD.PRIMARY except that the loss function used is cross-entropy,

Background

Motivation

Approach

Results

Analysis

Results

	setup			2018			2019						
id	t	loss	feat	data	METEOR	CIDEr	CIDErD	BLEU	METEOR	CIDEr	CIDErD	BLEU	STS
p-18-s2	Τ	се	rn+fr	C+M	0.1541	0.1657	0.0476	0.0091	0.1773	0.1858	0.0722	0.0207	_
p-18-a3	1	ce	rn	C+T	0.1776	0.1948	0.0700	0.0197	0.1993	0.2174	0.1004	0.0288	-
p-19-s1	В	sc	rn+i3d	C+T	0.2055	0.3025	0.1157	0.0294	0.2285	0.3277	0.1615	0.0385	0.4168
p-19-s2	٧	SC	i3d	Т	0.1958	0.2718	0.0949	0.0348	0.2139	0.2773	0.1245	0.0379	0.4169
p-19-s3	1	SC	rn	C+T	0.2007	0.2777	0.1074	0.0301	0.2254	0.3130	0.1569	0.0345	0.4282
p-19-s4	В	се	rn+i3d	C+T	0.1850	0.2190	0.0822	0.0213	0.2049	0.2348	0.1147	0.0319	0.4057

- p-18-s2 is our best submission in TRECVID 2018
- p-18-a3 is our best TRECVID 2018 post-conference result
- p-19-s* are our TRECVID 2019 submissisons

Comparison: METEOR 2018

Comparison: METEOR

Comparison: CIDEr

Comparison: CIDEr-D

Comparison: BLEU-4

Comparison: STS

Comparison

- s4 run is always the worst reinforcement learning is beneficial
- s1 run is almost always the best combining image and video features is good
- s3 run wins s2 with 4–1 COCO image features better than TGIF video features

Background

Motivation

Approach

Results

Analysis

Run types

In TRECVID VTT 2019 all submissions had to be tagged with their run type:

- Run type 'I': Only image captioning datasets were used for training
- Run type 'V': Only video captioning datasets were used for training
- Run type 'B': Both image and video captioning datasets were used for training

Run types per team

team	image	video	both
EURECOM		1	
FDU		2	
IMFD_IMPRESEE		3	
Insight_DCU			1
KU_ISPL		3	
KsLab		4	
PicSOM	1	1	2
RUCMM		4	
RUC_AIM3		4	
UTS_ISA		4	
10 teams	1	26	3

Training datasets used per team

team	COCO	TGIF	MSR-VTT	MSVD	VTT	VATEX	
EURECOM		Χ	X	Χ			0+3
FDU		Χ					0+1
IMFD_IMPRESEE			X				0+1
Insight_DCU		Χ					0+1
KsLab		Χ			X		0+2
PicSOM	Χ	Χ					1+1
RUCMM		Χ	X	Χ			0+3
RUC_AIM3		Χ	X		X	Χ	0+4
UTS_ISA		Χ	X	Χ	X		0+4
9 teams	1	8	5	3	3	1	0+0

Statistics of the training datasets

dataset	items	captions
COCO	123,287 img	616,767
TGIF	125,713 vid	125,713
MSR-VTT	6,513 vid	130,260
MSVD	1,969 vid	80,800
VTT	3,753 vid	9,020
VATEX	41,300 vid	826,000
LSMDC	108,536 vid	108,536

Video features used per team

team	I3D	C3D	CNN+pool	CNN+seq	audio
EURECOM	Χ				
FDU				X	
IMFD_IMPRESEE	Χ	X			
Insight_DCU		X			
KsLab			X		
PicSOM	Χ				
RUCMM		X	X		
RUC_AIM3	Χ			X	X
UTS_ISA	Χ			X	
9 teams	5	3	2	3	1

Background

Motivation

Approach

Results

Analysis

- In the PicSOM experiments the use of also the COCO dataset proved to be beneficial
- Naïve use of fake video features for images was better than not to use images at all
- This conclusion might be different if
 - our overall result level were higher
 - we used more video data than just TGIF
 - we used better video features than I3D
 - we used pooling or RNN based aggregation of framewise features
 - our implementation of self-critical training were better
- Model performance was very stable from validation with 2018 data to 2019 test data
- No other team used COCO dataset anymore
- Our results we clearly behind those of the best teams
- Specifying the run types in the way it was done now might be discontinued