Learn to Represent Queries and Videos for Ad-hoc Video Search

Xirong Li, Chaoxi Xu, Jianfeng Dong

Renmin University of China

Zhejiang Gangshang University

TRECVID 2019 Workshop 2019-11-12

Key question in ad-hoc video search

How to estimate the relevance of an *unlabeled* video (clip) with respect to a specific query expressed solely in *natural-language* text?

Three dimensions to explore

- Query representation
- Video representation
- Common space

Our approach

Based on two deep learning (and concept-free) models

W2VV++ [Li et al., ACMMM'19] Focus on the query side

Dual Encoding [Dong et al., CVPR'19] Focus on both query and video sides

Model 1: W2VV++

Consists of two subnetworks

- A sentence encoding network
 - Bag-of-words
 - Word2Vec + mean pooling
 - GRU + mean pooling
 - ... more text encoders can be included
- A transformation network
 - Common space learning

Model 1: W2VV++

Video representation by multi-level mean pooling

- Sample frames every 0.5 second
- Extract frame-level features by
 - ResNeXt-101
 - ResNet-152
- Two cnn features concatenated
 - 4,096-dim feature per frame

Given a sequence of frame-level CNN features, the network generates new, higher-level features progressively

Level 1: Global encoding by mean pooling

• To capture visual patterns repeatedly present in the video frames

Level 2: Temporal-aware encoding by biGRU

• To model the temporal information of the frame sequence

Level 3: Local-enhanced encoding by biGRU-CNN

• To enhance local patterns that help discriminate subtle differences

Multi-level encoding by simple concatenation

The same network design applies on the text side

The network encodes a given video / sentence in parallel

- + The same network design for both modalities
- + Three-level encoding for each modality
- + Separated encoding for each modality
- + Any SOTA common space learning can be used

Training / validation sets

Training

- MSR-VTT
 - 10k web video clips and 200k sentences
- TGIF
 - 100k animated GIFs and 120k sentences
- Validation
 - 90 topics from TV16 / 17 / 18
 - IACC.3, 335k video clips

Our submissions (fully automatic track)

 Four runs based on W2VV++, Dual Encoding and their combinations

run id	description
run 4	W2VV++
run 3	W2VV++ with a BERT encoder
run 2	Dual Encoding
run 1 (primary)	Late average fusion of W2VV++ and Dual Encoding

On TV 2016 - 2019 AVS tasks

- Dual Encoding is better than W2VV++
 - Marginally on TV16 and TV18
 - Clearly on TV17 and TV19
- Including BERT not always helps
 - Helpful only for TV17
- Model ensemble is better than individual models

Retrospective experiment

Dual Encoding*: Combine only Dual Encoding models

infAP improved from 0.160 to 0.170

 Dual Encoding is clearly better than W2VV++ on TV19

 Late average fusion is safe, but suboptimal for model ensemble

All fully automatic AVS submissions

#topicid	run1	run2	run3	run4
611	0.330	0.287	0.309	0.309
612	0.108	0.095	0.094	0.085
613	0.018	0.025	0.025	0.017
614	0.024	0.028	0.011	0.011
615	0.194	0.206	0.145	0.170
616	0.052	0.087	0.048	0.058
617	0.014	0.007	0.013	0.008
618	0.325	0.275	0.213	0.189
619	0.067	0.044	0.064	0.046
620	0.334	0.388	0.302	0.323
621	0.473	0.469	0.485	0.494
622	0.083	0.122	0.068	0.056
623	0.287	0.310	0.194	0.226
624	0.022	0.073	0.020	0.019
625	0.288	0.193	0.166	0.264
626	0.303	0.200	0.262	0.257
627	0.049	0.031	0.043	0.047
628	0.106	0.112	0.044	0.041
629	0.088	0.080	0.034	0.043
630	0.136	0.131	0.062	0.029
631	0.122	0.077	0.031	0.007
632	0.021	0.026	0.021	0.018
633	0.272	0.258	0.258	0.235
634	0.077	0.095	0.025	0.011
635	0.423	0.325	0.309	0.394
636	0.139	0.202	0.068	0.021
637	0.206	0.213	0.254	0.246
638	0.067	0.045	0.049	0.048
639	0.001	0.001	0.005	0.004
640	0.177	0.165	0.097	0.126

Easy query

All models perform well

621: person in front of a graffiti painted on a wall (W2VV++, infAP: 0.4939)

635: a bald man (W2VV++: 0.3942)

620: a person with a painted face or mask (W2VV++: 0.3230)

#topicid	run1	run2	run3	run4
611	0.330	0.287	0.309	0.309
612	0.108	0.095	0.094	0.085
613	0.018	0.025	0.025	0.017
614	0.024	0.028	0.011	0.011
615	0.194	0.206	0.145	0.170
616	0.052	0.087	0.048	0.058
617	0.014	0.007	0.013	0.008
618	0.325	0.275	0.213	0.189
619	0.067	0.044	0.064	0.046
620	0.334	0.388	0.302	0.323
621	0.473	0.469	0.485	0.494
622	0.083	0.122	0.068	0.056
623	0.287	0.310	0.194	0.226
624	0.022	0.073	0.020	0.019
625	0.288	0.193	0.166	0.264
626	0.303	0.200	0.262	0.257
627	0.049	0.031	0.043	0.047
628	0.106	0.112	0.044	0.041
629	0.088	0.080	0.034	0.043
630	0.136	0.131	0.062	0.029
631	0.122	0.077	0.031	0.007
632	0.021	0.026	0.021	0.018
633	0.272	0.258	0.258	0.235
634	0.077	0.095	0.025	0.011
635	0.423	0.325	0.309	0.394
636	0.139	0.202	0.068	0.021
637	0.206	0.213	0.254	0.246
638	0.067	0.045	0.049	0.048
639	0.001	0.001	0.005	0.004
640	0.177	0.165	0.097	0.126

Non-easy query

Not all models perform well

636: a man and a baby both visible

Dual Encoding infAP: 0.2022

W2VV++ infAP: 0.0214

#topicid	run1	run2	run3	run4
611	0.330	0.287	0.309	0.30
612	0.108	0.095	0.094	0.08
613	0.018	0.025	0.025	0.01
614	0.024	0.028	0.011	0.01
615	0.194	0.206	0.145	0.17
616	0.052	0.087	0.048	0.05
617	0.014	0.007	0.013	0.00
618	0.325	0.275	0.213	0.18
619	0.067	0.044	0.064	0.04
620	0.334	0.388	0.302	0.32
621	0.473	0.469	0.485	0.49
622	0.083	0.122	0.068	0.05
623	0.287	0.310	0.194	0.22
624	0.022	0.073	0.020	0.01
625	0.288	0.193	0.166	0.26
626	0.303	0.200	0.262	0.25
627	0.049	0.031	0.043	0.04
628	0.106	0.112	0.044	0.04
629	0.088	0.080	0.034	0.04
630	0.136	0.131	0.062	0.02
631	0.122	0.077	0.031	0.00
632	0.021	0.026	0.021	0.01
633	0.272	0.258	0.258	0.23
634	0.077	0.095	0.025	0.01
635	0.423	0.325	0.309	0.39
636	0.139	0.202	0.068	0.02
637	0.206	0.213	0.254	0.24
638	0.067	0.045	0.049	0.04
639	0.001	0.001	0.005	0.00
640	0.177	0.165	0.097	0.12

Hard query

All models perform bad

639: **inside view** of a small airplane flying (W2VV++, infAP 0.0036)

specific viewpoint

617:one or more picnic tables outdoors (Dual encoding, infAP 0.0065)

fine-grained concepts

Hard query?

614: a woman riding or holding a bike outdoors

• Dual encoding, infAP 0.0276

Reproducibility

https://github.com/li-xirong/w2vvpp

Test a trained W2VV++ on TV 16/17/18 AVS in few minutes

```
./do_test.sh iacc.3
~/VisualSearch/w2vvpp/w2vvpp_resnext101_resnet152_subspace_v190916.pth.tar
w2vvpp_resnext101_resnet152_subspace_v190916_tv16.avs.txt,tv17.avs.txt,tv18.avs.txt
```

```
[12 Nov 14:41:16 - util.py:line 19] /data/home/xironq/VisualSearch/iacc.3/SimilarityIndex/tv16.avs.txt/w2vvpp resne
xt101_resnet152_subspace_v190916/id.sent.score.txt exists. overwrite
[12 Nov 14:41:16 - predictor.py:line 93] Encoding videos
encode_vis execution time: 56.217 seconds
[12 Nov 14:42:12 - predictor.pv:line 101] Encoding tv16.avs.txt captions
30/30 [======== ] - 1s 30ms/step
encode txt execution time: 1.060 seconds
cosine_sim execution time: 53.042 seconds
writing result into file time: 18.874 seconds
[12 Nov 14:43:27 - util.pv:line 19] /data/home/xirong/VisualSearch/iacc.3/SimilarityIndex/tv17.avs.txt/w2vvpp resne
xt101_resnet152_subspace_v190916/id.sent.score.txt exists. overwrite
[12 Nov 14:43:27 - predictor.py:line 101] Encoding tv17.avs.txt captions
30/30 [======== ] - 1s 17ms/step
encode txt execution time: 0.717 seconds
cosine_sim execution time: 75.587 seconds
writing result into file time: 18.852 seconds
[12 Nov 14:45:03 - util.pv:line 19] /data/home/xirong/VisualSearch/iacc.3/SimilarityIndex/tv18.avs.txt/w2vvpp resne
xt101 resnet152 subspace v190916/id.sent.score.txt exists. overwrite
[12 Nov 14:45:03 - predictor.py:line 101] Encoding tv18.avs.txt captions
30/30 [======] - 1s 19ms/step
encode txt execution time: 0.793 seconds
```

Conclusions

- Learn to represent query / video is effective
- Late average fusion is safe, yet suboptimal, to boost performance

Queries with fine-grained concepts in specific viewpoints remain hard

https://github.com/li-xirong/video-retrieval

Li et al., W2VV++: Fully Deep Learning for Ad-hoc Video Search, ACMMM 2019 Dong et al., Dual Encoding for Zero-Example Video Retrieval, CVPR 2019