

## ActEV19: Activities in Extended Video t (Summary Results)

Presenter: Yooyoung Lee Afzal Godil, Jon Fiscus, Andrew Delgado, Lukas Diduch, Maxime Hubert, Eliot Godard, Jim Golden, Jesse Zhang

TRECVID 2019 Workshop

<u>November 12-13, 2019</u>





010011000010 0100011100011 0010111010100001111010101 1101000010 10 1111100000100

 $= -\partial A/\partial t$ 

# Disclaimer

Certain commercial equipment, instruments, software, or materials are identified in this paper to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor necessarily the best available for the purpose.

<u>The views and conclusions contained herein are</u> <u>those of the authors</u> and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, NIST, or the U.S. Government.



# Outline

- ActEV Overview
- TRECVID ActEV19 Evaluation
- ActEV19 Tasks and Measures
- ActEV19 Dataset
- ActEV19 Results and Analyses
- Next Steps



## **ActEV Overview**





## What is ActEV?



vehicle\_turning\_left-00



vehicle\_turning\_left-04



Closing-01



Closing-02



Closing-00



Loading-00



Loading-01



Loading-02

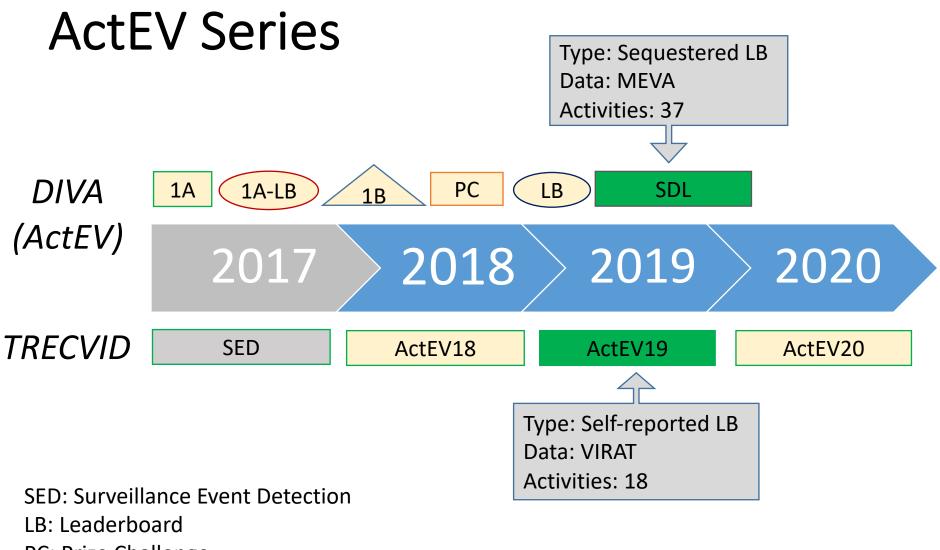




# What is ActEV's Goal?

- To advance video analytics technology that can automatically <u>detect a target activity</u> and <u>identify and</u> <u>track objects</u> associated with the activity.
- A series of challenges are also designed for:
  - Activity detection in a multi-camera environment
  - Temporal (and spatio-temporal) localization of the activity for reasoning




# NIST, IARPA, and Kitware

- NIST developed the ActEV evaluation series to support the metrology needs of the Intelligence Advanced Research Projects Activity (IARPA) Deep Intermodal Video Analytics (DIVA) Program
- The ActEV's datasets were collected and annotated by Kitware, Inc.









PC: Prize Challenge

SDL: Sequestered Data Leaderboard

#### 12/2/19



## TRECVID ActEV19 Evaluation





## **Evaluation Framework**

- Target applications
  - <u>Retrospective analysis of archives</u> (e.g., forensic analytics)
  - Real-time analysis of live video streams (e.g., alerting and monitoring)
- Evaluation Type
  - Self-reported (& take-home) evalulation
    - TRECVID ActEV19
  - Independent (& sequestered) evalulation
    - DIVA ActEV SDL



## ActEV19 Tasks and Measures

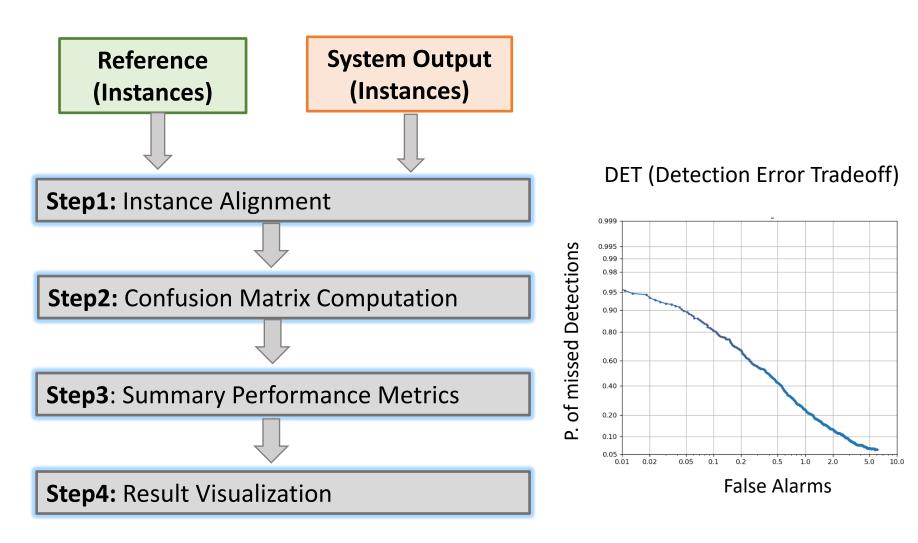




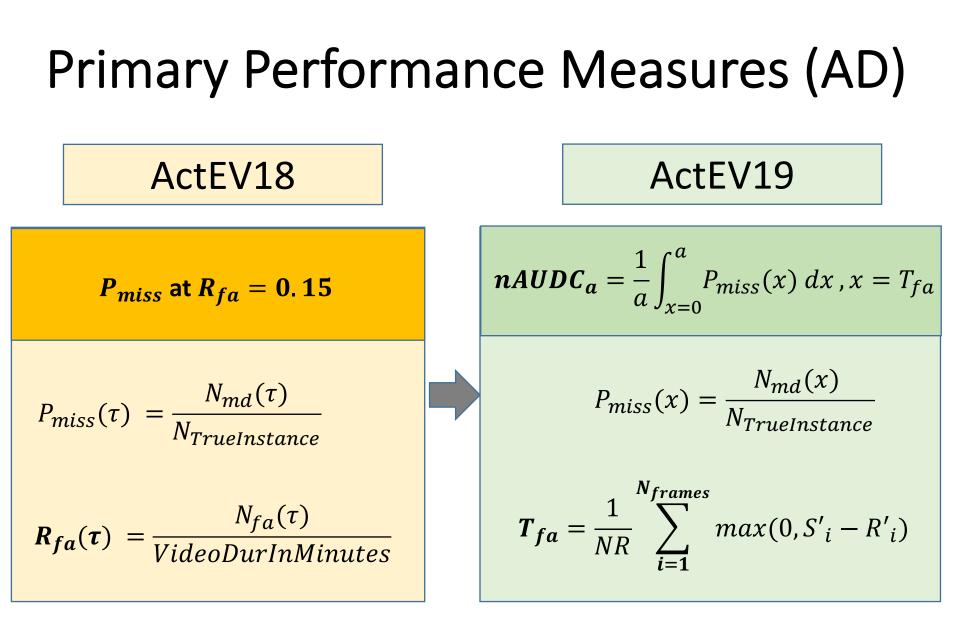
# Evaluation Tasks (AD)

- "Activity" definition for this evaluation
  - One or more people performing a specified movement, or interacting with an object or group of objects (including driving)
- Activity Detection (AD) task
  - Given a target activity, a system automatically 1) detects its presence and then temporally localizes all instances of the activity in video sequences
    - The temporal overlap must fall within a minimal requirement
  - The system output includes:
    - Start and end frames indicating the temporal location of the target activity
    - A presence confidence score that indicates how likely the activity occurred






## Past Evaluation Tasks (AOD and AODT)


- Activity and Object Detection (AOD)
  - A system not only 1) detects/localizes the target activity, but also 2) detects the presence of required objects and spatially localizes the objects that are associated with the activity
- Activity Object Detection/Tracking (AODT)
  - A system 1) correctly detects/localizes the target activity, 2) correctly detects/localizes the required objects in that activity, and 3) correctly tracks those objects over time.
- The AOD and AODT tasks are <u>NOT addressed</u> in ActEV19 evaluations



# **Performance Metric Calculation**

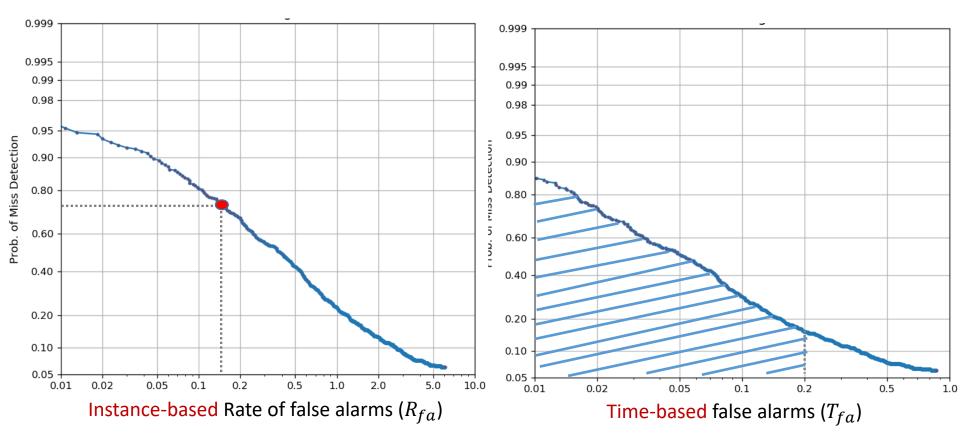






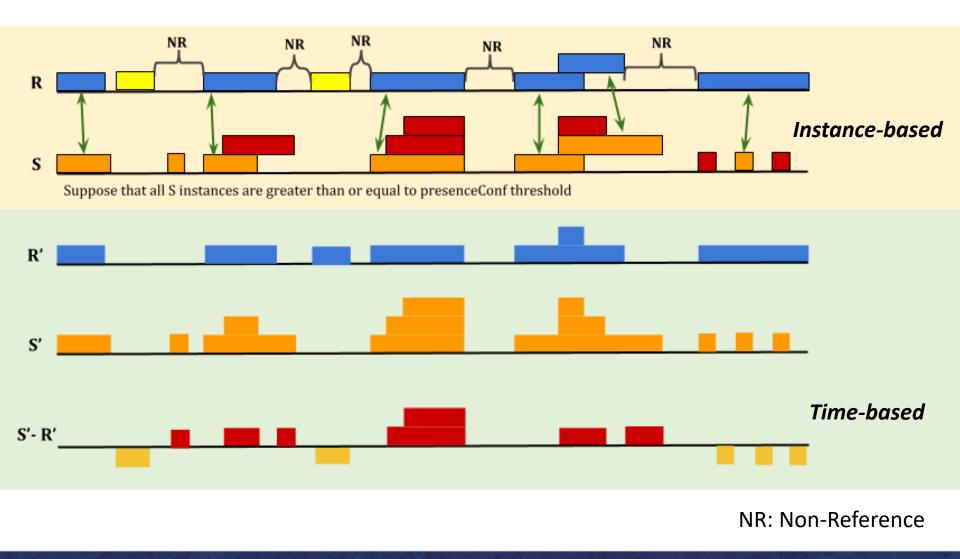
nAUDC (normalized partial Area Under the DET Curve)




## Performance Measures (AD)

## ActEV18




ActEV19

 $nAUDC_a$ , a = 0.2





## Instance vs Time based False Alarms



12/2/19



## ActEV19 Dataset



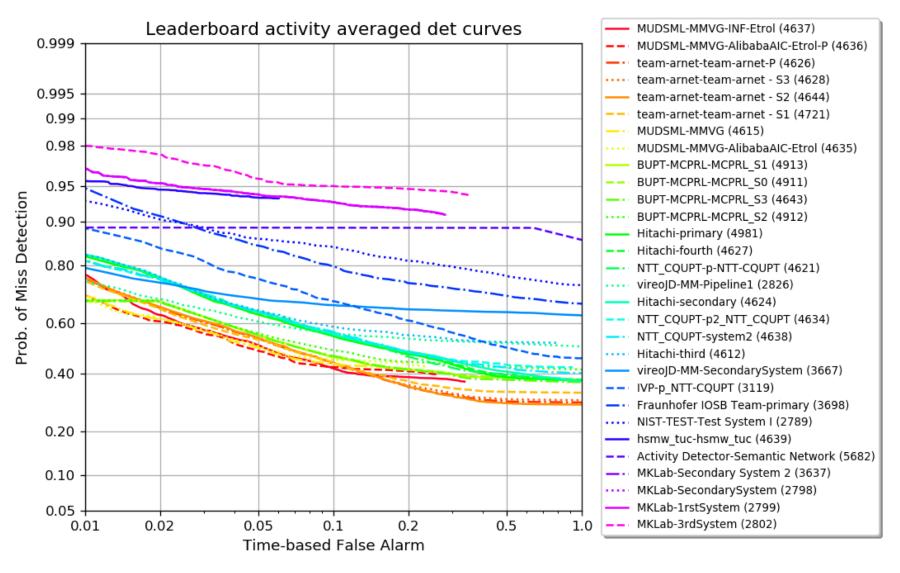


## Activities and Number of Instances

|                           | ActEV | 18 (V1)    | ActEV19 (V1V2) |            |  |  |  |
|---------------------------|-------|------------|----------------|------------|--|--|--|
| Activity Type             | Train | Validation | Train          | Validation |  |  |  |
| Closing                   | 126   | 132        | 126            | 132        |  |  |  |
| Closing_trunk             | 31    | 21         | 31             | 21         |  |  |  |
| Entering                  | 70    | 71         | 70             | 71         |  |  |  |
| Exiting                   | 72    | 65         | 72             | 65         |  |  |  |
| Loading                   | 38    | 37         | 38             | 37         |  |  |  |
| Open_Trunk                | 35    | 22         | 35             | 22         |  |  |  |
| Opening                   | 125   | 127        | 125            | 127        |  |  |  |
| Transport_HeavyCarry      | 45    | 31         | 45             | 31         |  |  |  |
| Unloading                 | 44    | 32         | 44             | 32         |  |  |  |
| Vehicle_turning_left      | 152   | 133        | 152            | 133        |  |  |  |
| Vehicle_turning_right     | 165   | 137        | 165            | 137        |  |  |  |
| Vehicle_u_turn            | 13    | 8          | 13             | 8          |  |  |  |
| Interacts                 | 88    | 101        | x              | х          |  |  |  |
| Pull                      | 21    | 22         | 21             | 22         |  |  |  |
| Riding                    | 21    | 22         | 21             | 22         |  |  |  |
| Talking                   | 67    | 41         | 67             | 41         |  |  |  |
| Activity_carrying         | 364   | 237        | 364            | 237        |  |  |  |
| Specialized_talking_phone | 16    | 17         | 16             | 17         |  |  |  |
| Specialized_texting_phone | 20    | 5          | 20             | 5          |  |  |  |

Due to ongoing evaluations, the test sets are not included in the table






## ActEV19 Results and Analyses





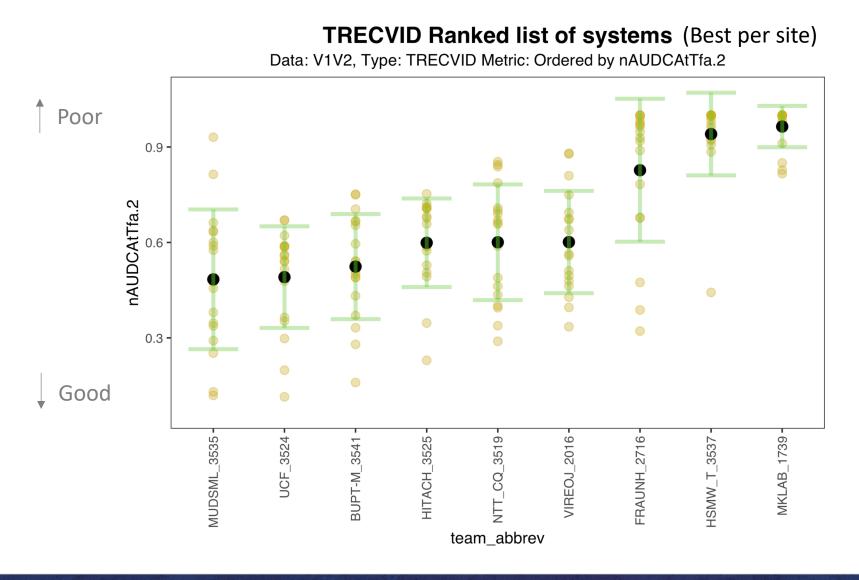
## As of 11/13/2019



#### 12/2/19



## ActEV19 Participants

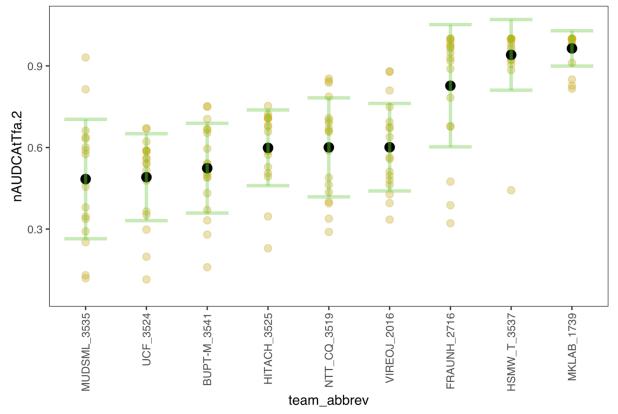

 256 submissions (as of 11/1/2019) from 9 teams from 6 countries (best system result per site)

| Team              | Organization                                                                                                | nAUDC |
|-------------------|-------------------------------------------------------------------------------------------------------------|-------|
| BUPT-MCPRL        | Beijing University of Posts and Telecommunications, China                                                   | 0.524 |
| Fraunhofer IOSB   | Fraunhofer Institute, Germany                                                                               | 0.827 |
| HSMW_TUC          | University of Applied Sciences Mittweida and Chemnitz University of Technology, Germany                     | 0.941 |
| MKLab (ITI_CERTH) | Information Technologies Institute, Greece                                                                  | 0.964 |
| MUDSML            | Monash University, Australia and Carnegie Mellon University, USA                                            | 0.484 |
| NII_Hitachi_UIT   | National Institute of Informatics, Japan Hitachi, Ltd., Japan University of Information Technology, Vietnam | 0.599 |
| NTT_CQUPT         | NTT company & Chongqing University of Posts and<br>Telecommunications, China                                | 0.601 |
| UCF               | University of Central Florida, USA                                                                          | 0.491 |
| vireoJD-MM        | City University of Hong Kong and JD AI Research, China                                                      | 0.601 |





# Performance Ranking (AD)

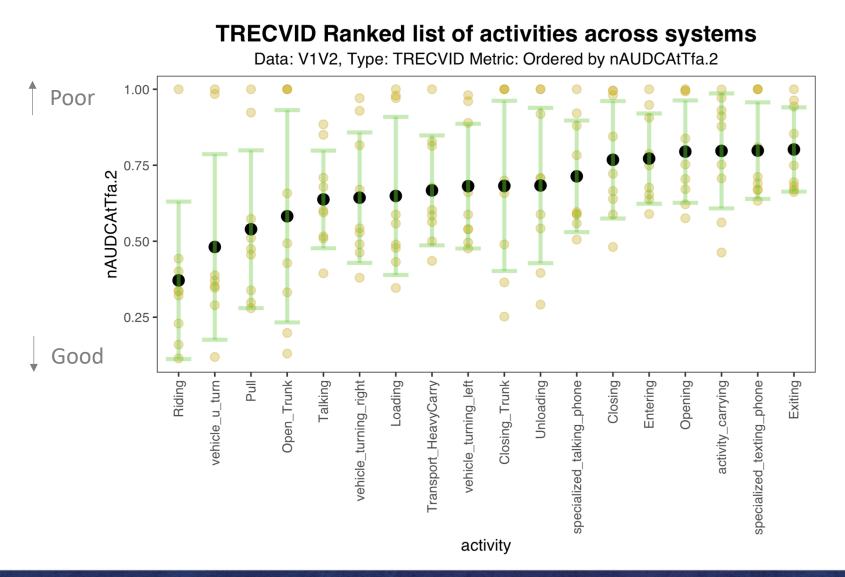



#### 12/2/19

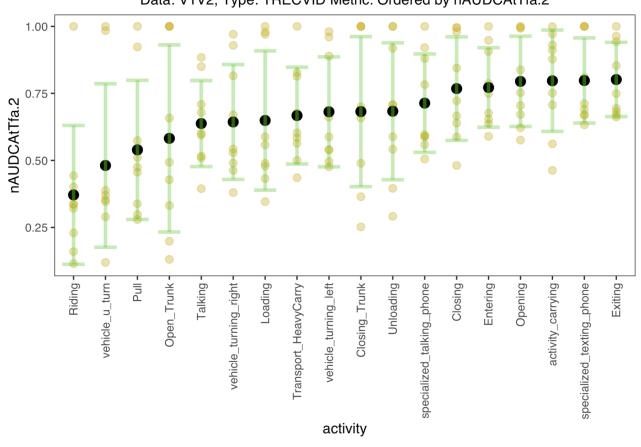


#### **TRECVID Ranked list of systems**

Data: V1V2, Type: TRECVID Metric: Ordered by nAUDCAtTfa.2




#### Observation


- Highest performance on activity detection:
  - MUDSML (nAUDC: 48.4%) followed by UCF (nAUDC: 49.1%)
- A large variance of the 18 activities across systems



# Activity Ranking (AD)







#### **TRECVID Ranked list of activities across systems**

Data: V1V2, Type: TRECVID Metric: Ordered by nAUDCAtTfa.2

#### Observation

- Given the dataset and the 18 activities, "Riding" is the easiest to detect while "Exiting" is the hardest across the 9 systems
- "Open\_Truck" and "Closing\_Truck" have lager variance across systems



## Which activities are easier or more difficult to detect?

TRECVID Summary of Activitian Difficulty

|          |                             | IKE  |              |               |               | •             |              |               |               |            | -             |
|----------|-----------------------------|------|--------------|---------------|---------------|---------------|--------------|---------------|---------------|------------|---------------|
|          |                             | D    | ata: v       | 172, 1        | ype:          | REC           | /ID Me       | etric: n      | AUDC          | Atita      | .2            |
|          | Riding -                    | 3.2  | 1.0          | 1.0           | 1.0           | 1.0           | 13.5         | 5.0           | 4.0           | 1.0        | 1.0           |
|          | vehicle_u_turn -            | 4.6  | 4.0          | 2.0           | 2.0           | 9.0           | 13.5         | 1.0           | 1.0           | 4.0        | 5.0           |
|          | Pull -                      | 5.5  | 2.0          | 3.0           | 6.0           | 5.0           | 13.5         | 8.0           | 2.0           | 3.0        | 7.0           |
|          | vehicle_turning_right -     | 6.8  | 7.0          | 9.0           | 5.0           | 8.0           | 1.0          | 7.0           | 11.0          | 9.0        | 4.0           |
|          | Talking -                   | 7.4  | 9.0          | 5.0           | 15.0          | 2.0           | 3.0          | 13.0          | 3.0           | 7.0        | 10.0          |
|          | Open_Trunk -                | 7.5  | 3.0          | 17.0          | 3.0           | 15.0          | 13.5         | 2.0           | 9.0           | 2.0        | 3.0           |
|          | vehicle_turning_left -      | 7.9  | 10.0         | 7.0           | 8.0           | 7.0           | 6.0          | 9.0           | 10.0          | 8.0        | 6.0           |
| >        | Loading -                   | 7.9  | 5.0          | 12.0          | 7.0           | 15.0          | 5.0          | 6.0           | 7.0           | 6.0        | 8.0           |
| activity | Transport_HeavyCarry -      | 9.0  | 8.0          | 4.0           | 9.0           | 15.0          | 2.0          | 17.0          | 5.0           | 12.0       | 9.0           |
| ä        | specialized_talking_phone - | 9.7  | 12.0         | 6.0           | 4.0           | 4.0           | 13.5         | 12.0          | 8.0           | 10.0       | 18.0          |
|          | Unloading -                 | 10.5 | 11.0         | 8.0           | 13.0          | 15.0          | 13.5         | 4.0           | 14.0          | 14.0       | 2.0           |
|          | Closing_Trunk -             | 10.6 | 6.0          | 17.0          | 10.0          | 15.0          | 13.5         | 3.0           | 13.0          | 5.0        | 13.0          |
|          | Entering -                  | 12.3 | 13.0         | 10.0          | 11.0          | 3.0           | 13.5         | 15.0          | 15.0          | 15.0       | 15.0          |
|          | activity_carrying -         | 12.4 | 18.0         | 13.0          | 14.0          | 11.0          | 4.0          | 18.0          | 6.0           | 11.0       | 17.0          |
|          | Closing -                   | 12.6 | 14.0         | 14.0          | 17.0          | 10.0          | 7.0          | 10.0          | 17.0          | 13.0       | 11.0          |
|          | Exiting -                   | 13.8 | 17.0         | 11.0          | 12.0          | 6.0           | 13.5         | 16.0          | 18.0          | 17.0       | 14.0          |
|          | Opening -                   | 14.1 | 16.0         | 15.0          | 18.0          | 15.0          | 8.0          | 11.0          | 16.0          | 16.0       | 12.0          |
|          | specialized_texting_phone - | 15.2 | 15.0         | 17.0          | 16.0          | 15.0          | 13.5         | 14.0          | 12.0          | 18.0       | 16.0          |
|          |                             | AVG  | BUPT-M_3541- | FRAUNH_2716 - | HITACH_3525 - | HSMW_T_3537 - | MKLAB_1739 - | MUDSML_3535 - | NTT_CQ_3519 - | UCF_3524 - | VIREOJ_2016 - |
|          |                             |      |              |               | t             | team_         | abbrev       | /             |               |            |               |

- X-axis: team names and and average activity ranking (AVG)

- Y-axis:18 activities -Numbers in the matrix: the ranking of 18 activities per system

15

10

The activity class was characterized by systems and baseline performance

**Observation:** the Riding, vehicle\_u\_turn, and Pull activities are easier to detect compared to the rest of the other activities

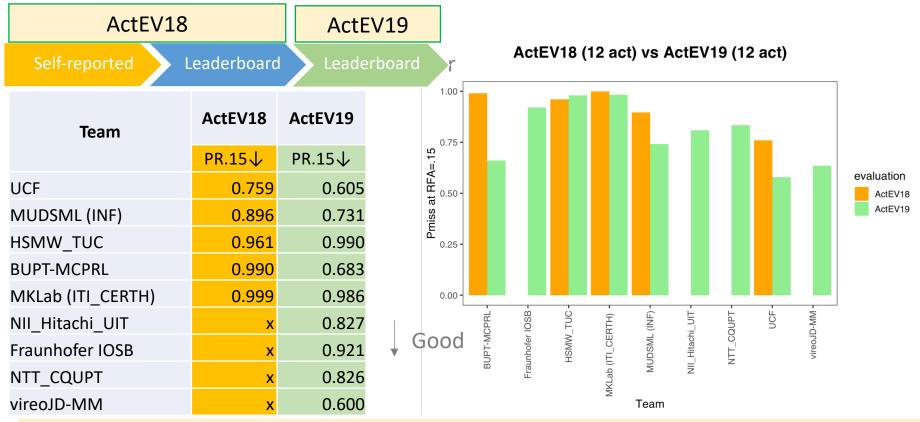
12/2/19



#### Comparison of ActEV18 and ActEV19 Results

|                   | ActE     | V18     | ActEV19 |       |  |  |  |
|-------------------|----------|---------|---------|-------|--|--|--|
| Team              | Self(12) | LB (19) | LB (18) |       |  |  |  |
|                   | PR.15↓   | PR.15↓  | PR.15↓  | nAUDC |  |  |  |
| UMD               | 0.618    | x       | x       | x     |  |  |  |
| SeuGraph          | 0.624    | x       | x       | x     |  |  |  |
| Team_Vision       | 0.710    | 0.709   | x       | x     |  |  |  |
| UCF               | 0.759    | 0.733   | 0.680   | 0.491 |  |  |  |
| STR-DIVA Team     | 0.827    | x       | x       | x     |  |  |  |
| JHUDIVATeam       | 0.887    | x       | x       | x     |  |  |  |
| MUDSML (INF)      | 0.896    | 0.844   | 0.789   | 0.484 |  |  |  |
| SRI               | 0.927    | x       | x       | x     |  |  |  |
| VANT              | 0.940    | 0.882   | x       | x     |  |  |  |
| HSMW_TUC          | 0.961    | x       | 0.951   | 0.941 |  |  |  |
| BUPT-MCPRL        | 0.990    | 0.749   | 0.736   | 0.524 |  |  |  |
| USF Bulls         | 0.991    | 0.934   | x       | x     |  |  |  |
| MKLab (ITI_CERTH) | 0.999    | x       | 0.968   | 0.964 |  |  |  |
| UTS-CETC          | x        | 0.925   | x       | x     |  |  |  |
| NII_Hitachi_UIT   | x        | 0.925   | 0.819   | 0.599 |  |  |  |
| Fraunhofer IOSB   | x        | x       | 0.849   | 0.827 |  |  |  |
| NTT_CQUPT         | x        | x       | 0.878   | 0.601 |  |  |  |
| vireoJD-MM        | x        | x       | 0.714   | 0.601 |  |  |  |

T: TRECVID, D: DIVA, Self: Self-reported eval, LB: Leaderboard eval PR.15:  $\mu P_{miss}$  at  $R_{FA} = 0.15$ 




## Comparison of ActEV18 vs ActEV19 (Leaderboard only)

|                   | ActEV18  | ActEV19               | ]      | <b>PR</b> . 1  | 15: <i>P</i>      | miss            | at $R_{f}$ | <sub>a</sub> =. 1 | l <b>5</b> ( <i>Ac</i> | tEV1            | 8 <i>sco</i> | ring   | prot       | ocol)     |
|-------------------|----------|-----------------------|--------|----------------|-------------------|-----------------|------------|-------------------|------------------------|-----------------|--------------|--------|------------|-----------|
| Dataset           | VIRAT V1 | VIRAT V1V2            | ↑ Po   | oor            |                   | Act             | EV18 (     | 19 ac             | et) vs A               | CtEV            | 19 (18       | 3 act) |            |           |
| # Activities      | 19       | 18                    |        | 1.00           |                   |                 |            | _                 |                        |                 |              |        |            | ]         |
| Metric            | PR.15    | PR.15                 | 1      |                |                   |                 |            |                   | _                      |                 |              |        |            |           |
|                   | ActEV1   | 8 ActEV19             |        | 0.75 -         |                   |                 |            |                   |                        |                 |              | _      | _          |           |
| Team              | LB (19)  | LB (18)               | ۲<br>۲ | CT.=ATRA=.020- |                   |                 |            |                   |                        |                 |              |        |            | ovelvetie |
|                   | PR.15    | ∕ PR.15↓              |        | 1 0.50 -       |                   |                 |            |                   |                        |                 |              |        |            | evaluatio |
| UCF               | 0.7      | <mark>33</mark> 0.680 | 0<br>0 | ISS a          |                   |                 |            |                   |                        |                 |              |        |            | ActEV     |
| MUDSML (INF)      | 0.8      | <mark>44</mark> 0.789 | 2<br>0 | E 0.25 -       |                   |                 |            |                   |                        |                 |              |        |            |           |
| HSMW_TUC          |          | x 0.951               |        | 0.20           |                   |                 |            |                   |                        |                 |              |        |            |           |
| BUPT-MCPRL        | 0.7      | <mark>49</mark> 0.736 |        |                |                   |                 |            |                   |                        |                 |              |        |            |           |
| MKLab (ITI_CERTH) |          | x 0.968               |        | 0.00 -         |                   |                 |            |                   |                        |                 |              |        |            |           |
| NII_Hitachi_UIT   | 0.9      | <mark>25</mark> 0.819 | 🗼 G    | iood           | CPRL              | IOSB            | TUC        | RTH)              | (INF)                  | TIU_ir          | CQUPT        | UCF    | D-MM       |           |
| Fraunhofer IOSB   |          | x 0.849               |        |                | <b>BUPT-MCPRL</b> | Fraunhofer IOSB | HSMW_TUC   | MKLab (ITI_CERTH) | MUDSML (INF)           | NII_Hitachi_UIT |              |        | vireoJD-MM |           |
| NTT_CQUPT         |          | x 0.878               |        |                | BU                | Fraur           | I          | -ab (IT           | MUI                    | IN              | Z            |        | -          |           |
| vireoJD-MM        |          | x 0.714               |        |                |                   |                 |            | MKL               | Teers                  |                 |              |        |            |           |
|                   |          |                       |        |                |                   |                 |            |                   | Team                   |                 |              |        |            |           |

Observation: System performance improved from last year for leaderboard eval. For example, reduced ~12% relative error rate NII\_Hitachi\_UIT, ~7% for and UCF and MUDSML

## Comparison of ActEV18 vs ActEV19 (12 Activities only)



#### Observation:

- System performance on 12 activities improved largely from ActEV18 to ActEV19

 Reduced 31% relative error rate for BUPT-MCPRL, 21% for UCF, and 18% for MUDSML



## Summary

- New performance measure to be more relevant to the user cases
- 256 submissions out of 9 teams
- Given the test set and the 18 activities, "Riding" is the easiest while "Exiting" is the hardest across the 9 systems
- Large system improvements this year from last year



# Next Steps





## Next Steps

 WACV HADCV'20 (Human Activity Detection in multi-camera, Continuous, long-duration Video) workshop (*paper submission deadline: Dec 15, 2019)* the details at <u>https://wacv20.wacv.net</u>



- Resources: <u>https://actev.nist.gov</u> (click "Resources")
  - Datasets (training data)
  - Baseline algorithms
  - Annotation Tools
- TRECVID ActEV20 plan
  - ActEV Task Discussion Session (including new M1 data release)



## Sequestered Data Leaderboard (SDL)

- Anyone can *submit their system to NIST*, which will then run the system on *sequestered data* (MEVA), post the results to the leaderboard
- Visit ongoing ActEV SDL Evaluation at <u>https://actev.nist.gov/sdl</u>
- MEVA data (<u>https://mevadata.org/</u>)
  - 37 activities (72 video hours) : Indoor and outdoor scenes, night and day, crowds and individuals, EO (Electro-Optical) and IR (Infrared) sensors
  - New M1 data release



| 9:00 - 9:30 am   | Activities in Extended Video (ActEv) Task Overview                                                                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 9:30 - 10:00 am  | BUPT-MCPRL at TRECVID 2019: ActEv                                                                                              |
|                  | BUPT_MCPRL Team - Beijing University of Posts and Telecommunications                                                           |
| 10:00 - 10:30 am | AI Surveillance System for Spatial-Temporal Activity Detection in<br>Surveillance Scenarios                                    |
|                  | MUDSML + INF Teams - Monash University; Carnegie Mellon University                                                             |
| 10:30 - 11:00 am | Our ActEv approach with object detection and custom tracking algorithm                                                         |
|                  | HSMW_TUC Team - University of Applied Sciences Mittweida                                                                       |
| 11:00 - 11:30 am | Break with refreshments                                                                                                        |
| 11:30 - 12:00 am | Real-time activity detection in surveillance videos                                                                            |
|                  | UCF Team - University of Central Florida                                                                                       |
| 12:00 - 12:30 pm | Event Detection with Specialized Object Detectors                                                                              |
|                  | Hitachi Team                                                                                                                   |
| 12:30 - 2:00     | Lunch                                                                                                                          |
| 2:00 - 2:30 pm   | Traffic Danger Recognition with Surveillance Cameras Without Training Data, Invited Talk: Lijun Yu, Carnegie Mellon University |
| 2:30 - 2:50 pm   | ActEv Task Discussion                                                                                                          |





## Questions?

https://actev.nist.gov/

Contact: <a href="mailto:actev-nist@nist.gov">actev-nist@nist.gov</a>



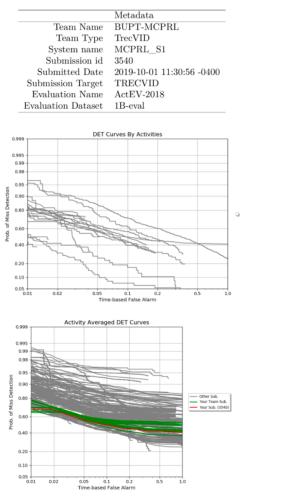


## TRECVID ActEV19 Feedback and ActEV20 Discussion

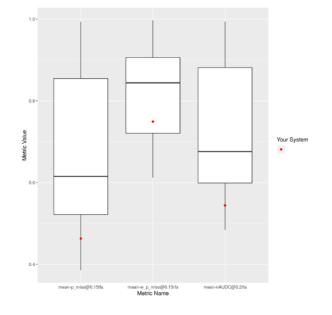


## Sequestered Data Leaderboard (SDL)

- Anyone can *submit their system to NIST*, which will then run the system on *sequestered data* (MEVA), post the results to the leaderboard
- Visit ongoing ActEV SDL Evaluation at https://actev.nist.gov/sdl
- MEVA data (<u>https://mevadata.org/</u>)
  - 37 activities (72 video hours) : Indoor and outdoor scenes, night and day, crowds and individuals, EO (Electro-Optical) and IR (Infrared) sensors
  - New M1 data release




## 2019 ActEV feedback and 2020 plans


- What do the teams think about the ActEV task ?
- Any feedback on the new Scoring Metric compared to the 2018 Metric?
- Any feedback on the data repo to download data (VIRAT, MEVA, ..) ?
- Any feedback on the scoring server and different documents?
- Besides the ActEV leaderboard, we have added the ActEV reports (report on next slide), any feedback?
- Current Plan is to continue the ActEV task with the VIRAT dataset with more activities (28 or more activities)



#### Current TRECVID ActEV reports (at the end of the evaluation)



#### BUPT-MCPRL-SYS-00293-20191001-113056-4859



