
Transforming Videos to Text (VTT Task)
Team: MMCUniAugsburg

Philipp Harzig
Multimedia Computing and Computer Vision Lab

University of Augsburg
Augsburg, Germany

philipp.harzig@uni-a.de

Moritz Einfalt
Multimedia Computing and Computer Vision Lab

University of Augsburg
Augsburg, Germany

moritz.einfalt@uni-a.de

Katja Ludwig
Multimedia Computing and Computer Vision Lab

University of Augsburg
Augsburg, Germany

katja.ludwig@uni-a.de

Rainer Lienhart
Multimedia Computing and Computer Vision Lab

University of Augsburg
Augsburg, Germany

rainer.lienhart@uni-a.de

Abstract—The Multimedia and computer Vision Lab of the University

of Augsburg participated in the VTT task only.

We use the Auto-captions on GIF [1] (AC-GIF), MSR-VTT [2] and

TRECVID-VTT [3] datasets for training our VTT models.

We base our model on the Transformer [4] approach for both of our sub-

mitted runs, i.e., for runs 103.primary and 102. For our 103.primary run,

we use the complete MSR-VTT dataset and 90% of the TRECVID-VTT

dataset for pretraining while using the remaining 10% for validation. For

the 102 run, we additionally utilize the complete AC-GIF dataset for the

pretraining stage. Both runs were finetuned on TRECVID-VTT (90%).

During finetuning the 102 run, the validation performance decreases

significantly, while 103.primary improves in performance. The use of the

AC-GIF dataset decreases the performance, because the domain and the

captions are different to the other datasets.

Overall, we find that training a Video-to-Text system on traditional Image

Captioning pipelines [5] delivers very poor performance. When switching

to a Transformer-based architecture our results greatly improve and

the generated captions match better with the corresponding video (see

Figure 3).

I. INTRODUCTION

In this notebook paper, we present our Video-to-Text model, which
allows to create descriptions for arbitrary videos. Our model is
inspired by the classical Transformer [4] approach.

II. MODEL

A. Preprocessing of Videos

In order to process the videos in our model, we first need to extract
single frames. We use ffmpeg for extracting every frame of each
video of the respective dataset. We use ResNet-101 [6] to compute
features for the extracted frames. More specifically, we resize the
input images to 224⇥ 224 and use the average pooled features with
dimension R2048.

B. Model

An overview of our model architecture is depicted in Figure 1.
In comparison with the original Transformer [4] architecture, we
changed the encoder part to accept image features instead of em-
bedded words. That is, we exchanged the sentence encoder with a
video encoder. More specifically, we replaced the input embedding
with an image embedding, which is standard practice in common
image captioning models [5]. An image embedding layer embeds the
image features into the desired embedding space. In our model, we
use ResNet-101 features 2 R2048 and embed them into the encoder

Fig. 1. Our model architecture was slightly modified from the original
Transformer [4] to allow video frames as input to the encoder blocks. Original
image taken from [4] and modified to match our architecture.

space with dimension dmodel = 512.
We also use positional encoding to encode the order of every single
frames in the video. As the Transformer architecture does not care
about the order of the input, i.e., every frame can influence every



TABLE I
THE THREE DATASETS WE USED TO TRAIN OUR MODELS. WE LIST THE

NUMBER OF VIDEOS AND SENTENCES IN THE DATASET AND THE NUMBER
OF USABLE VIDEOS AND SENTENCES, I.E., VIDEOS THAT WERE

AVAILABLE AT THE TIME OF DOWNLOAD.

Dataset # Videos (clips) # Sentences # Videos used # Sentences used

AC-GIF [1] 163,183 164,378 163,183 164,378
TRECVID-VTT [3] 7,485 28,183 5,971 22,547
MSR-VTT [2] 10,000 200,000 7,773 155,460

other frame in the same way, we need to explicitly tell the encoder
the frame number. Similar to the original paper, we use a positional
encoding to encode the frame number, which we add on top of the
embedded image features.
The rest of the Transformer architecture is nearly identical to the
proposed architecture in [4]. In the encoder, we made use of the
memory-augmented encoding [7], which encodes multi-level visual
relationships with a priori knowledge. In the original work, Cornia et
al. use a persistent, learnable memory vector which is concatenated to
the key and value of the self-attention blocks of the Transformer (see
Figure 2). These memory vectors allow to encode persistent a-priori
knowledge about relationships between image regions. In contrast
to the original work, we work with video sequences instead of still
images with regions. Adapted to our architecture, the memory vector
encodes a-priori knowledge about relationships between frames in a
given video. We did not change the architecture of the decoder block.

Fig. 2. The Memory-Augmented Encoder, which we used in our Multi-Head-
Attention blocks. Image taken from [7].

III. DATASOURCES

We use three datasets for training our models, which are described
below. Additionally, we show some dataset statistics in Table I.

A. Auto-captions on GIF

The Auto-captions on GIF [1] (AC-GIF) dataset was designed for
pre-training Video-to-Text models. Because existing video-sentence
datasets are mostly task-specific, i.e., they are mainly focused on
specific domains such as cooking [8], the authors of the AC-
GIF dataset tried to create a more generic dataset. They created
their dataset by collecting GIFs and their respective alt-text HTML

TABLE II
DATA SOURCES USED FOR TRAINING OUR BASE MODELS. WE ALSO

DEPICT THE TOTAL NUMBER OF TRAINING AND VALIDATION SAMPLES
USED.

Model: Data sources # train samples # val samples

1: MSR-VTT + 90% TRECVID-VTT 175902 2285
2: MSR-VTT + AC-GIF + 90% TRECVID-VTT 303380 2285

attributes from the web. The AC-GIF dataset contains 163, 183 videos
and 164, 378 sentences. The total number of words is 1, 619, 648 with
an vocabulary of 31, 662 words.

B. TRECVID-VTT
We use the official TRECVID-VTT dataset [3] which contains

videos from the TRECVID VTT from 2016-2019. We only use the
Twitter Vine subset of videos. In total, this subset contains 6, 475
videos from which we use 5, 971 available videos with 22, 547
captions. In all our experiments we train on 90% and validate the
model on 10% of the videos.

C. MSR-VTT
We also use the MSR-VTT dataset [2] for training our VTT model.

The MSR-VTT dataset consists of 7, 180 videos, which make up
10, 000 clips. In total, the dataset contains 200, 000 sentences with
a total of 1, 856, 523 words and a vocabulary of 29, 316 words.
Because not all videos were available at the moment of download, we
only use 7, 773 video clips with 155, 460 corresponding sentences.

IV. MODEL CONFIGURATIONS

We submitted two models for the Video-to-Text (VTT) task.
Both of our models are pretrained on a merged dataset and then
finetuned on the TRECVID-VTT dataset. For our primary model
(cf. 103.primary), we first train a base model on the full MSR-VTT
dataset and 90% of the TRECVID-VTT dataset. We select the model
by employing an early-stopping strategy on the CIDEr score of the
remaining 10% of the TRECVID-VTT dataset. For finetuning, we
use the base model and train it on the 90% split of the TRECVID-
VTT dataset. We also use early-stopping to select our final primary
model.
Our second model (cf. 102) is trained similarly, except we use AC-
GIF (full), MSR-VTT (full) and TRECVID-VTT (90%) for training
the base model. For finetuning the second model, we also use the
TRECVID-VTT (90%) split. In Table II, we present the number of
training samples used for training the base and finetuned models.
Our models use 8 encoder and 8 decoder blocks. We use 8 attention
heads and a model dimension of dmodel = 512. For the position-
wise feed-forward networks, we set dff = 2048 as the inner-layer
dimensionality. We use a memory-vector size of dmemory = 64. The
primary model uses a vocabulary of 12, 000 complete words. For the
second model, we use a subword text encoder with 20, 283 subwords.
It does not use complete words for the vocabulary, but tries to build
words from subwords, i.e., it splits words into subwords if a word is
not in the initial dictionary.

V. TRAINING

We train our models in a multi GPU setting, i.e., we train the model
on 5 NVIDIA Tesla V100 GPUs simultaneously. We use a batch size
of 16 per GPU, resulting in an effective batch size of 80. We use
the Adam [9] optimizer with �1 = 0.9,�2 = 0.98 and ✏ = 10�9.
Similar to [4], we used a variable learning rate ⌘ over the course
of the training. That is, we used a linearly increasing learning rate



TABLE III
SUBMITTED MODELS (IN BOLD) AND THEIR RESPECTIVE VALIDATION SCORES. WE VALIDATED ALL OF OUR MODELS AFTER EVERY EPOCH ON 10% OF

THE TRECVID-VTT DATASET TO SELECT A MODEL TO SUBMIT.

Model best performance @ epoch B-1 B-2 B-3 B-4 CIDEr METEOR

primary-base 25 0.4104 0.2340 0.1323 0.0760 0.1755 0.1161
primary-ft 8 0.4312 0.2419 0.1353 0.0713 0.1761 0.1169

secondary-base 25 0.4191 0.2331 0.1327 0.0752 0.1384 0.1196
secondary-ft 1 0.3457 0.1934 0.1092 0.0610 0.1507 0.1096

in a warm-up phase and decrease it afterwards proportionally to the
inverse square root of the current training iteration i

⌘ = d�0.5
model ·min(i�0.5, i · w�1.5). (1)

In contrast to the original Transformer architecture, we used
w = 10, 000 for the number of warm-up steps.
For the base model of our primary model (primary-base), we ob-
served the best validation performance on TRECVID-VTT after 25
epochs with a CIDEr score of 0.18. We used this model to finetune
on only on the TRECVID-VTT dataset (primary-ft). In doing so,
we slightly improved the scores as can be seen in Table III. For
our second model, we chose the same approach but trained the base
model on more data sources, namely MSR-VTT, AC-GIF and 90% of
TRECVID-VTT. The best scores were also observed after 25 epochs
and are in the same range as our primary model. However, when
finetuning the second model on MSR-VTT only, the scores constantly
decreased expect the CIDEr score as can bee seen in Table III. We
submitted results generated by the second finetuned models, because
we selected it based on the CIDEr scores and the generated captions
on the validation set looked quite promising.

VI. RESULTS

TABLE IV
SUBMITTED MODELS AND THEIR RESPECTIVE PERFORMANCE ON THE

UNSEEN TEST DATASET.

Model BLEU CIDEr CIDEr-D METEOR

primary-ft 0.018 0.140 0.064 0.202
second-ft 0.011 0.136 0.060 0.204

Before switching to the Transformer model, we experimented on
a vanilla captioning model with an encoder and a LSTM decoder
similar to [5]. These experiments have shown to deliver very bad
performance and very similar sentence. Hence, we switched to the
Transformer architecture, which yielded better results both quali-
tatively and quantitatively. For the TRECVID workshop [10], we
submitted captions generated on the provided test videos (1, 700)
for both of our models.
These captions were evaluated by the workshops organizers. Com-
pared to our validation set scores, the evaluation on the test set yields
worse results as can be been in Table IV. Especially, the BLEU score
is much lower on the test data than on the evaluation data. However,
the METEOR score is better on the test set.
We depict four videos and their generated caption in Figure 3. We
see that for the first three videos our generated captions match the
video content quite good. The first video does indeed look like a man
talking to people in a classroom. Only if we look closer, we see that
this is not a classroom, but rather some presentation in front of adults.

In the second video, our model detects a young man singing and fails
to recognize that there are two men, one of which is singing and the
other is playing the piano. In the third video, our model detects a
group of people who seem to be dancing. But it places them on
a beach rather than in a pedestrian zone. In the fourth video, our
model wrongly assumes that there is snow in a parking lot. However,
it recognizes a man moving on the street in the daytime, but not the
bicycle.

VII. CONCLUSION

In this notebook paper, we presented our VTT model based on a
Tansformer [4] architecture. By extracting features for every frame
of the videos, we were able to adapt the Transformer architecture
to use videos in the encoder block. The decoder block could be
used without modification. In addition, we modified the Multi-Head
Attention of the encoder to use memory vectors similar to [7] which
allow to memorize a priori knowledge about relationships between
video frames. By training on multiple datasets, we are able to generate
captions that describe video contents (see Figure 3). However, as not
all objects and circumstances of the videos are detected and described
correctly, we want to address object and relationship detection in
future work.

REFERENCES

[1] Y. Pan, Y. Li, J. Luo, J. Xu, T. Yao, and T. Mei, “Auto-captions on gif:
A large-scale video-sentence dataset for vision-language pre-training,”
arXiv preprint arXiv:2007.02375, 2020.

[2] J. Xu, T. Mei, T. Yao, and Y. Rui, “Msr-vtt: A large video description
dataset for bridging video and language,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5288–5296,
2016.

[3] G. Awad, A. Butt, K. Curtis, Y. Lee, J. Fiscus, A. Godil, A. Delgado,
et al., “Trecvid 2019: An evaluation campaign to benchmark video
activity detection, video captioning and matching, and video search &
retrieval,” 2019.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, pp. 5998–6008, 2017.

[5] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 3156–3164, 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European conference on computer vision, pp. 630–645,
Springer, 2016.

[7] M. Cornia, M. Stefanini, L. Baraldi, and R. Cucchiara, “Meshed-memory
transformer for image captioning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10578–
10587, 2020.

[8] P. Das, C. Xu, R. F. Doell, and J. J. Corso, “A thousand frames in
just a few words: Lingual description of videos through latent topics
and sparse object stitching,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2634–2641, 2013.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.



a man talks to a group of people in a classroom 

A young man playing a keyboard and singing. 

A group of people are dancing on a beach. 

A man in a parking lot of snow moves on a street in the daytime. 

Frame #1/184 Frame #47/184 Frame #93/184 Frame #138/184 Frame #184/184

Frame #1/118 Frame #30/118 Frame #59/118 Frame #89/118 Frame #118/118

Frame #1/151 Frame #39/151 Frame #76/151 Frame #113/151 Frame #151/151

Frame #1/123 Frame #31/123 Frame #62/123 Frame #93/123 Frame #123/123

Fig. 3. Four videos from the test dataset and the corresponding captions generated by our model primary-ft.

[10] G. Awad, A. A. Butt, K. Curtis, Y. Lee, J. Fiscus, A. Godil, A. Delgado,
J. Zhang, E. Godard, L. Diduch, J. Liu, A. F. Smeaton, Y. Graham,
G. J. F. Jones, W. Kraaij, and G. Quénot, “Trecvid 2020: comprehensive
campaign for evaluating video retrieval tasks across multiple application
domains,” in Proceedings of TRECVID 2020, NIST, USA, 2020.


