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Abstract

In this report, we present our solutions for the two tasks of TRECVID 2020 [1]:
Ad-hoc Video Search (AVS) and Video to Text Description (VTT). For the AVS
task, we adopt a two-branch framework including a global matching branch and a
fine-grained matching branch. In the global matching branch, we employ VSE++
[2] and Dual Encoding [3] models to capture the global information of video and
text. In the fine-grained matching branch, we adopt the hierarchical matching
model HGR [4] to match the video and text at more fine-grained level. For the
VTT Matching and Ranking subtask, we use the same two-branch model as the
AVS task and further improve it with hubness mitigation as [5] at inference time.
For the VTT Description Generation subtask, we employ a two-layer LSTM as the
language decoder to generate video descriptions at both scene-level and object-level
and late fuse them with hybrid reranking. Our team RUC_AIM3 finally ranks the
1st place on both AVS and VTT tasks in TRECVID 2020.

1 Ad-hoc Video Search

1.1 Approach

Ad-hoc video search task aims to retrieve video clips with a text query. Given the query, the AVS task
requires to retrieve the most relevant top 1000 video clips from the V3C vimeo collection [6] which
contains 1,082,659 video clips.

The main challenge of this task is the semantic matching between video and text. Most recent works
learn a joint visual-semantic embedding to measure the cross-modal similarities [2, 3]. They first
encode the video and text as global feature vectors respectively and then map them into a joint
embedding space. We call such models as global matching models, which are shown good abilities
to capture the global information of video and text for the overall matching and achieve promising
results in cross-modal video-text retrieval tasks.

However, the single global encoding vector is insufficient to represent complicated details of video
and text, such as scenes, objects, actions and their compositions. In order to capture both global
and local details, we propose a fine-grained matching model called Hierarchical Graph Reasoning
(HGR) [4]. The HGR model decomposes video-text matching into global-to-local levels. It takes the
advantage of global and local matching approaches and makes up their deficiencies.

Since the global matching models and fine-grained matching models are complementary, our Ad-hoc
Video Search System combines these two branches through a late fusion strategy to achieve better
performance. We will introduce our system in details in the following subsections.

⇤Qin Jin is the corresponding author.



1.1.1 Global Matching

In the global matching branch, we adopt two effective models: VSE++ [2] and Dual Encoding [3].

The VSE++ takes the mean pooling of frame-level features as the global features of video clips and
concatenates the forward and backward hidden states of bidirectional GRU (biGRU) as the global
features of text queries. A fully connected layer is adopted to map them into the joint embedding
space. The main contribution of the VSE++ model is the proposed triplet loss function with hard
negative mining, which is used in each model in our retrieval system.

The Dual Encoding improves the video encoder and text encoder of VSE++. Given a sequence of
input features, three levels encoder (mean pooling, biGRU, and biGRU-CNN) are used to encode
global, temporal and local information respectively. The encoded features from three levels are then
concatenated into a single feature vector and mapped into the joint embedding space.

We train the VSE++ and Dual Encoding models respectively and late fuse them by averaging the
similarity scores during inference time. Furthermore, we also train the above two models using BERT
as the text encoder instead.

1.1.2 Fine-grained Matching

We employ the HGR model [4] in our fine-grained matching branch. The HGR model disentangles
text query into a hierarchical semantic graph including three levels of events, actions, entities. Then it
generates hierarchical textual embeddings via attention-based graph reasoning. The three levels are
responsible to capture global events, local actions, entities respectively. Different levels of text are
used to guide the learning of diverse and hierarchical video representations. Cross-modal matchings
at all three levels are aggregated to compute the final cross-modal similarities. More details of the
HGR model can be found in our previous work [4].

1.2 Experiments

We employ the MSRVTT [7], TGIF [8] and VATEX [9] video captioning datasets as our training set,
and TRECVID VTT 2016 as the validation set. Besides these video captioning datasets, to improve
the generalization ability of our system, we further adopt the image captioning dataset MSCOCO [10]
to train the global matching models. We extract video features with ResNeXt-101 [11] pre-trained on
billion scale weakly-supervised data [12] and irCSN-152 [13] pre-trained on IG-65M [14]. For the
model trained on image captioning dataset, only ResNeXt-101 is used to extract image features.

For ad-hoc video search task, we submit four runs as follows:

• Run 4: Global matching branch (Ensemble of VSE++ and Dual Encoding models trained on
video captioning datasets).

• Run 3: Run 4 + global matching models trained on image captioning datasets.
• Run 2: Run 3 + Fine-grained matching branch (HGR).
• Run 1: Run 2 + global matching models with BERT as the text encoder.

Table 1: Results of different runs on TRECVID 2019 and 2020 AVS Main Task.

Runs Method Training Data Results
2019 2020

Winner in 2019 [15] - - 0.163 -
Run 4 Global Video 0.177 0.354
Run 3 Global Video + Image 0.193 0.350
Run 2 Global & Fine-grained Video + Image 0.195 0.357
Run 1 Global & Fine-grained, +BERT Video + Image 0.196 0.359

Run 5* Global & Fine-grained, +BERT Video 0.181 0.361

Table 1 presents the infAP performances of four submitted runs on TRECVID 2019 & 2020 AVS
Main Task, which contains 30 and 20 text queries respectively. All of our four runs significantly
outperform the winner solution in 2019 [15]. Run 4 is our baseline model which only contains global
matching branch and is trained on video captioning datasets. The performances of Run 4 to Run 1 on
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TRECVID 2019 dataset are gradually improved with additional components added, which includes
the models trained on image captioning dataset, fine-grained matching branch and the models using
BERT as the text encoder. However, unlike the trend on 2019 dataset, the performance of Run 3
on 2020 dataset decreases after adding models trained on image captioning dataset. Nevertheless,
our Run 1 achieves the best result among all participating teams with the infAP of 0.359. Since
the ground-truth of this year has been released, we re-tested a new submission called Run 5, which
removed models trained on image captioning dataset, and achieved a better performance with the
infAP of 0.361. Since the queries are different in 2019 and 2020 datasets, the contribution of using
the additional image dataset varies a lot.

Table 2: Results of TRECVID 2020 AVS Progress Subtask (10 queries).

Runs Results
Winner in 2019 [15] 0.177

Run 4 0.235
Run 3 0.208
Run 2 0.220
Run 1 0.223

Table 2 shows the infAP performance of the four submitted runs on TRECVID 2020 AVS Progress
Subtask, which contains 10 text queries. The performances of our 4 runs are all better than the winner
solution in last year [15]. The Run 4 achieves the best performance among the 4 runs, because all
other 3 runs utilize image captioning dataset in training, which might not be suitable for queries in
2020 as shown in Table 1.

2 Video-to-Text Description

2.1 Matching and Ranking

The VTT matching and ranking subtask aims to rank a list of sentences for a given video based on
their semantic relevance. In this year, there are 1,700 videos selected from V3C vimeo collection [6]
and 5 sentence sets with 1,720 sentences in each of them. It is similar to the AVS task, except that it
is video-to-text retrieval while the AVS task is text-to-video retrieval.

2.1.1 Approach

For VTT matching and ranking subtask, we adopt two-branch model similar to our Ad-hoc Video
Search System, including global matching branch and fine-grained matching branch. We employ
Dual Encoding [3] in the global matching branch and HGR [4] in the fine-grained matching branch.

The hubness problem [5] is common in high-dimensional space learning, which means that some
texts can be the nearest neighbors for multiple videos. However, we want to retrieve different texts
rather than the same “hub” text to different video queries. We follow [5] to employ Inverted Softmax
[16] to mitigate the hubness problem. It scales down the similarity s(v, t) between video v and text t
if t is also close to other video queries.

s0(v, t) =
e�s(v,t)P

v2V \{v} e
�s(v,t)

(1)

where V denotes all video queries and � is a hyperparameter temperature which is set as 30.

2.1.2 Experiments

For VTT matching and ranking subtask, we submit four runs as follows:

• Run 4: Global matching branch with hubness mitigation. (Single Dual Encoding model)
• Run 3: Fine-grained matching branch with hubness mitigation. (Single HGR model)
• Run 2: Global matching branch with hubness mitigation (Ensemble).
• Run 1: Global matching branch and Fine-grained matching branch with hubness mitigation

(Ensemble).
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Table 3: Results of TRECVID 2020 VTT matching and ranking subtask.

Ours SetA SetB SetC SetD SetE
Run 4 0.606 0.611 0.621 0.618 0.636
Run 3 0.627 0.621 0.620 0.620 0.641
Run 2 0.683 0.692 0.691 0.696 0.711
Run 1 0.714 0.711 0.707 0.721 0.731

Table 3 presents the mean inverted rank metric results of four submitted runs on TRECVID 2020
VTT matching and ranking subtask. Run 4 and Run 3 are single models that use global matching
branch and fine-grained matching branch, respectively. The performance of fine-grained matching is
better than global matching. Run 2 and Run 1 show that using ensemble of multiple models in each
branch can significantly improve the performance. Run 1 combines the global matching branch and
fine-grained matching branch and achieves the best results.

2.2 Description Generation

2.2.1 Approach

Compared with selecting descriptions from the corpus through matching [2], the description genera-
tion subtask is more challenging which aims to automatically generate a natural language sentence to
describe the video content [17]. Following with previous works [17, 18], we employ the encoder-
decoder architecture [19] for this subtask. Considering the complexities of videos at both spatial and
temporal structures, we encode the video at both scene-level and object-level to capture abundant
video information for the description generation. For the language decoder, we employ a two-layer
LSTM to generate descriptions with temporal and spatial attentions on the above two kinds of en-
coding features and late fuse them via hybrid reranking. In the following, we will introduce each
component of our model in details.

Scene-level and Object-level Video Encoding. In order to comprehensively encode videos, we ex-
tract two types of video features for temporal and spatial attention respectively. In the temporal branch,
we represent the video as a sequence of segment-level multi-modal features V T = {vT1 , . . . , vTn }.
Each segment-level feature is the concatenation of video features from 2D (ResNeXt-101 [11]) and
3D (irCSN [13]) CNNs. In the spatial branch, we employ Faster-RCNN [20] pretrained on Visual
Genome [21] to extract grounded region features for each frame of the video, and select the top-K
region features V S = {vS1 , . . . , vSK} according to their predicted scores. The V T and V S are then
used as the scene-level and object-level video encoding features respectively.

Language Decoder with Temporal and Spatial Attentions. Based on the encoded video features,
we can generate video descriptions with temporal and spatial attentions. We employ a two-layer LSTM
[22] as the language decoder to generate description words based on ctxT

t and ctxS
t respectively.

The decoder includes an attention LSTM and a language LSTM. The attention LSTM takes the
previous word embedding wt�1 and previous output from language LSTM hl

t�1 as input to compute
an attentive query ha

t as follows:

ha
t = LSTM([wt�1;h

l
t�1], h

a
t�1; ✓

a) (2)

where [; ] is vector concatenation and ✓a are parameters.

With the computed attention query ha
t , the captioning model learns to focus on the relevant temporal

frames and spatial regions for each word’s generation as follows:

zTt = softmax(ha
tW

T (V T )T )V T (3)

zSt = softmax(ha
tW

S(V S)T )V S (4)
Then the language LSTM is fed with z⇤t and ha

t to generate words sequentially:

hl
t = LSTM([z⇤t ;h

a
t ], h

l
t�1; ✓

l), ⇤ 2 [T, S] (5)

p(yt|y<t) = softmax(Wph
l
t + bp) (6)

where ✓l, Wp and bp are parameters.
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We train the whole model with cross entropy (XE) loss and further improve it via reinforcement
learning (RL) [23] with CIDEr [24] as the sequence-level reward function to address the exposure
bias and target mismatch [25] problems in MLE. The XE loss and RL loss for a single ground-truth
pair (v, y⇤), where y⇤ = {y⇤1 , . . . , y⇤L}, are:

Lxe = � 1

L

LX

t=1

log p(y⇤t |y⇤<t, v) (7)

Lrl = � 1

L
r(ys)

LX

t=1

log p(yst |ys<t, v) (8)

where ys = {ys1, · · · , ysL} is a paragraph sampled from the model and r(·) is the reward function,
which is defined with CIDEr.

Hybrid Reranking. Considering that the scene-level and object-level captioning models are comple-
mentary, we late fuse the two models with hybrid reranking. Another language model and video-text
matching model are trained to evaluate the generated descriptions from language fluency and visual
relevance perspectives. The language model is another LSTM pre-trained on the ground-truth caption
corpus, which can be used to evaluate the language fluency of generated ones. The cross-modal
semantic matching model is trained as in Matching and Ranking subtask, and be fixed to evaluate the
visual relevance of generated captions. We can rerank the captions generated from the two models by
the weighted sum of fluency score and relevancy score, and choose the best description for the video.

2.2.2 Experiments

We employ the TGIF [8], MSRVTT [7], VATEX [9], TRECVID VTT 2016-2018 video captioning
datasets as our training set, and TRECVID VTT 2019 as our validation set. To verify the effectiveness
of the proposed captioning model, we first conduct experiments on the MSRVTT dataset with different
captioning models, including the AoANet [26] with attention on attention, LSTM version of X-LAN
[27] with infinity order feature interaction, Transformer [28] and our two-layer LSTM model.

Table 4: Performance comparison of different captioning models on MSRVTT validation set.

Models BLEU@1 BLEU@2 BLEU@3 BLEU@4 CIDEr METEOR SPICE

Trained with Cross-Entropy Loss

AoANet 83.20 69.88 55.98 42.73 51.97 29.54 7.01
X-LAN 84.07 71.95 58.94 46.65 58.63 30.48 7.41

Transformer 85.10 70.98 56.78 43.63 51.61 30.94 7.60
Ours 82.14 67.58 53.08 40.68 53.32 30.50 7.87

Trained with Reinforcement Learning

AoANet 85.83 71.89 57.15 43.62 60.39 30.41 7.71
X-LAN 87.96 74.91 60.77 47.46 59.69 31.68 7.92

Transformer 85.51 71.02 55.72 42.11 53.88 30.08 7.85
Ours 87.89 74.42 59.54 45.61 62.06 31.41 8.00

The results in Table 4 show that the LSTM-based models perform better than the Transformer on
the captioning task, which might come from two reasons. Firstly, the transformer structure has
the advantage in long text generation, however, the short video captioning task usually generates
descriptions of no longer than 20 words. Secondly, for the captioning task, visual understanding and
grounding is more important than the textual context modeling. Therefore, the transformer model
does not show its advantages as in machine translation task [28]. Our two-layer LSTM model and the
X-LAN model are the best two models, which are adopted in the following experiments.

Table 5 shows the results of the above two models on scene-level and object-level video features.
Our model achieves competitive results with the X-LAN model on scene-level video features, while
outperforms it on the object-level features. It also shows that models with spatial attention alone are
inferior to the temporal attention models, which infers the temporal information is more important
than the spatial information in videos. Combining our models on different features with hybrid
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Table 5: Results with different visual features on TRECVID VTT 2019 dataset.

Models Loss BLEU@1 BLEU@2 BLEU@3 BLEU@4 CIDEr METEOR SPICE

Trained with Scene-level Video Features

X-LAN XE 57.67 39.87 26.35 16.78 30.23 16.16 10.94
Ours XE 59.53 38.93 24.81 15.47 30.29 15.47 10.71

X-LAN RL 66.67 45.13 29.21 18.13 36.01 17.30 11.60
Ours RL 66.52 45.01 29.24 18.19 36.30 17.37 11.63

Trained with Object-level Video Features

X-LAN XE 57.81 39.55 26.06 16.62 28.85 15.95 10.64
Ours XE 61.18 40.02 25.50 15.80 32.17 17.00 11.64

X-LAN RL 65.85 44.40 28.64 17.78 32.96 17.02 11.18
Ours RL 65.87 44.84 29.13 18.04 35.15 17.29 11.62

Hybrid Reranking

Ours RL 67.75 46.48 30.30 18.80 38.45 17.96 12.32

reranking shows significant improvements due to the complementarity of the temporal and spatial
models.

Finally, we submit four runs as follows, and their final evaluation results on TRECVID VTT 2020
dataset are shown in Table 6.

• Run 4: Our single best model.

• Run 3: Ensemble of the captioning models trained on object-level visual features.

• Run 2: Ensemble of the captioning models trained on scene-level visual features.

• Run 1: Ensemble of run2 and run3 by captions reranking.

Table 6: Results of the submitted four runs on TRECVID VTT 2020 dataset.

Runs BLEU@4 CIDEr METEOR SPICE

4 5.11 28.40 29.64 10.20
3 5.27 27.70 29.65 10.30
2 5.42 28.90 30.28 10.70
1 5.56 30.30 31.02 11.00

3 Conclusions

In this report, we present our systems for the Ad-hoc Video Search (AVS) and Video to Text
Description (VTT) tasks in TRECVID 2020 challenge. For the AVS task, we adopt a two-branch
architecture which includes a global matching branch and a fine-grained matching branch to match
videos and texts at both global and fine-grained levels. For the VTT task, we propose to integrate
temporal and spatial attentions for the captioning model based on scene-level and object-level video
features. Hybrid reranking is employed to ensemble different models according to the language
fluency and visual relevance qualities of generated captions. Our systems achieve the best performance
on both tasks in the TRECVID 2020 challenge.
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