
UCF-System:Activity Detection in Untrimmed Videos

Ishan Dave∗, Zacchaeus Scheffer∗, Praveen Tirupattur∗, Yogesh Rawat†, Mubarak Shah†
Center for Research in Computer Vision

University of Central Florida, Orlando, Florida
∗{ishandave,zaccy,praveentirupattur}@knights.ucf.edu,†{yogesh, shah}@crcv.ucf.edu

Abstract

Activity detection in surveillance videos is a challenging problem due to multiple
factors such as large field of view, presence of multiple activities, varying scales
and viewpoints, and its untrimmed nature. The requirement of processing the
surveillance videos in real-time makes this more challenging. In this work, we
propose a real-time online system to perform activity detection on untrimmed
surveillance videos. The proposed system consists of three stages: first we detect
tubelets with activities, then classify them, and finally merge them to generate
spatio-temporal activity detections. We propose a localization network which
takes a video clip as input and makes use of feature pyramid, multi-layer loss,
and atrous convolutions to address the issue of multiple scales and detect small
activities in terms of tubelets. The online processing of videos at a clip level
drastically reduces the computation time in detecting activities. The detected
tubelets are assigned activity class scores and merged together using our proposed
Tubelet-Merge Action-Split (TMAS) algorithm to form action tubes. The TMAS
algorithm efficiently connects the tubelets in an online fashion to generate spatio-
temporal detections which are robust against varying length activities. We perform
our experiments on the DIVA (Deep Intermodal Video Analytics) dataset and
demonstrate the effectiveness of the proposed approach in terms of speed (∼100
fps) and performance with state-of-the-art results. The code and models will be
made publicly available.

1 Introduction

Deep convolutional neural networks have achieved impressive action classification results in recent
years [25, 2, 26]. Similar advancements have been made for the tasks of action detection in trimmed
videos [12, 24, 5] and temporal action localization in untrimmed videos [29, 19]. However, these
improvements have not been transferred to spatio-temporal action detection in untrimmed videos;
current computer vision systems have yet to achieve high performance on this difficult task.

Action detection in untrimmed security videos poses multiple challenges. Surveillance videos
comprise of multiple viewpoints and contain several actors performing multiple actions concurrently.
These actors have varying scales and tend to be extremely small relative to the video frame, which
makes detection of small activities extremely challenging. These challenges make it difficult to
extend existing methods to detect actions in the untrimmed security videos found in the DIVA (Deep
Intermodal Video Analytics) dataset [17]. Current methods are trained and evaluated on datasets
which contain some, but not all of these challenges. For example, THUMOS’14 [11] is comprised
of untrimmed videos, but each video contains only one or two actors performing the same action.
The AVA dataset [8] contains multiple actors and actions, but each video is trimmed. Figure 1 shows
sample frame from the DIVA dataset and compares them with frames from other action detection
datasets.

Figure 1: Top: Two Sample frames from different scenes of the DIVA dataset showing variation in
perspective, scale and field-of-view. Bottom: Sample frames from the AVA dataset [8] (left) and from
the THUMOS’14 dataset [11] (right). The DIVA dataset contains a greater number of concurrent
actions as well as a greater variety of action scales (both spatially and temporally).

In this work, we focus on untrimmed surveillance videos and propose an online real-time system
for spatio-temporal action detection. Since activities in untrimmed videos can vary in length, it is
necessary to handle both short, atomic activities, like opening a door or exiting a vehicle, as well as
long, repetitive actions like walking or riding. To this end, our pipeline processes videos in an online
fashion: it localizes and classifies short action tubelets. Our Tubelet-Merge Action-Split (TMAS)
algorithm, merges these tubelets into action-agnostic tubes of varying length and splits the tubes into
a set of final spatio-temporal action predictions. By classifying short tubelets and merging them into
action tubes, our system is able to detect both atomic and repetitive actions.

Our action localization module proposes pixel-level action localizations for a short video clip.
This allows our system to generate action tubelet proposals without the use of frame-based object
detectors. Frame-based object detection systems [7] have two main issues: 1) processing each frame
independently requires large amounts of computation, which reduces the overall speed of the system
and leads to temporally inconsistent detections between adjacent frames, and 2) all objects within
the frame are detected, even those which are not performing actions. Our action localization module
processes multiple frames simultaneously and only produces tubelets which correspond to possible
actions within the video. This results in temporally consistent localizations as well as a reduction
in the number of proposals which drastically increases the speed of the overall system. Due to our
localization network and the overall system’s online processing of videos, inference is performed at
∼100 frames per second, greatly exceeding the speed of contemporary action detection systems.

Our contributions are as follows:

• We propose a real-time online system that performs spatio-temporal action detection in
untrimmed surveillance videos at ∼100 frames per second.

• We propose a novel action localization network to detect activity agnostic tubelets which
significantly reduces the processing time of the system.

• The proposed TMAS tubelet merging algorithm efficiently connects the tubelets in an online
fashion and produces spatio-temporal detections which are consistent across time as well as
robust against varying length activities.

We evaluate the proposed approach on the DIVA (Deep Intermodal Video Analytics) dataset and
obtain state-of-the-art results in terms of both speed and performance.

2 Literature Review

Convolutional Neural Networks (CNN) have been studied for video analysis and applied successfully
for the action recognition problem [25, 2]. Earlier approaches fuse 2D frame features to extract
temporal information[13], while recent works mostly apply 3D convolution to extract spatio-temporal
features simultaneously [25, 2, 6, 27]. The work in [6, 23] use two stream network architectures to
further exploit temporal dependencies.

2

Most action classifiers expect short trimmed videos but this is unrealistic for action recognition in
real world surveillance videos. Predicting the temporal extents of actions is necessary for reliable
recognition. In [19], a new layer is proposed to temporally localize activities in videos of MultiThumos
dataset [29]. They represent actions as combinations of Gaussian distributions, which are predicted
by their temporal convolution layer. Another major property of real world videos is that multiple
actions can occur within the same scene. Most works on spatial action detection rely on a region
proposal network [21] to detect multiple objects in each frame and combine them temporally to
generate action tubelets [28, 18]. However, this approach becomes computationally inefficient as the
number of proposals grows larger, making it unsuitable for real time methods. In [10], a 3D CNN
network efficiently predicts frame-wise background-foreground segmentation map and extrapolates
the action tubes. Duarte et al.[5] proposes a capsule based action detection network which segments
and recognize actions jointly.

Spatio-temporal action detection in untrimmed videos requires more complex systems than aforemen-
tioned approaches. In [7], a frame level object detection and optical flow based model is proposed to
solve spatio-temporal action detection for DIVA [17] dataset. They apply hierarchical clustering on
all detected object regions in a video to obtain tube proposals and use optical flow to perform action
classification. This approach is computationally expensive and not suitable for online processing.
Our framework uses a 3D CNN network for spatio-temporal action segmentation which produces
temporally consistent predictions and a fewer number of proposals. Additionally, our system pro-
cesses videos in an online fashion without using computationally expensive methods (region proposal
network, optical flow) and achieves better performance in real-time.

3 Methodology

Figure 2: Overview of the proposed system for action detection in untrimmed videos. An untrimmed
video is processed clip by clip and fed into the localization network, producing localization masks.
Tubelet extraction produces tubelets for each clip, which are then classified and passed to our TMAS
system. The classified tubelets are merged to create action-agnostic tubes, from which individual
action-specific detections are obtained.

3.1 Overview

The proposed system takes in a video clip as input and detects all activities in the form of tubelets.
The system first operates on entire clip to spatio-temporally localize action tubelets. Once we extract
potential tubelets, our classification system identifies all possible activities occurring within each
tubelet. These action predictions are then fed into our TMAS system, which simultaneously filters and
combines them into accurate and consistent action tubes. As an end result, we obtain spatio-temporal

3

action detections over long untrimmed videos in an online real-time process. The following sections
describe the different components of our system.

3.2 Localization Network

The tube extraction process is the first step in the pipeline, responsible for extracting all action tubes
from the untrimmed video input. Localizing action regions both temporally and spatially is vital for
the classification task as the length and location of action is unknown beforehand. Furthermore, each
action tube could comprise of multiple actors performing multiple actions concurrently. This requires
actor and action agnostic tube extraction.

As shown in Figure 2, first we divide the untrimmed videos into smaller clips, which are then
forwarded into the localization network. Following an encoder-decoder approach, the network
produces segmentation masks for action regions, each of which represents an action tubelet. These
tubelets are then individually processed by subsequent components of our system. Since this bottom-
up segmentation is performed for multiple frames simultaneously, we reduce the time taken to localize
multiple actions within a video clip.

The proposed localization network uses an encoder-decoder structure, and extracts class-agnostic
action features which can be used to generate segmentation masks; this requires an effective feature
extractor as an encoder. To this end, we utilize a 3D convolution based encoder, I3D [2], to learn
spatio-temporal features required for activity localization.

In the decoder, we use extracted action features to segment regions from the original input which
contain activities. Depending on the task, this segmentation can be coarse (patches of regions) to
fine grained (pixel level). We opt to produce relatively fine grained segmentations, keeping a balance
between separable action tubes and a reasonable memory utilization. Following recent works in image
segmentation [3, 4, 16] and video segmentation [5, 10], we use a decoder structure which combines
transpose convolutions and upsampling. Stacking many transpose convolution layers is memory
intensive and adds many parameters to the decoder, so we interleave upsampling operations to
interpolate features. This results in a shallow decoder network, which prevents over-parameterization
and avoids overfitting.

Skip Connections: It is difficult to produce fine grained pixel level segmentations using features which
have been spatially down-sampled by the encoder. To obtain these fine grained segmentations one
would need a deep, memory intensive decoder. To circumvent this we pass low level features from
various layers of encoder directly to corresponding layers of the decoder network, which has been
found effective for image segmentation [16, 4]. This allows the decoder network to reincorporate
essential features that were lost during encoding process, which results in improved pixel level
segmentations.

Feature Pyramids: The objects present in surveillance videos have varying scale. Therefore, using
information from layers with different feature resolutions helps in segmenting objects of different
sizes. The authors in [4, 16] have recently shown that building feature pyramids from various layers,
at different scales, aids in learning contextual information. Motivated by this, we stack features from
various decoder layers (through upsampling) to obtain feature representations at different scales.

Atrous Convolution: Having contextual information for each pixel aids in the process of learning
richer features for fine grained segmentation. Since conventional convolutions have a limited receptive
field, they are unable to learn this contextual information without incurring a heavy memory overhead.
To address this, we apply atrous convolution, with different receptive windows, on our final feature
representation. Atrous convolution applies a convolution operation with dilated kernels centered
around a pixel, which effectively increases the receptive field. We apply dilation at multiple rates
to infer contextual relations among pixels with varying distances. The authors in [4] utilize atrous
convolution for encoder-decoder based segmentation and observed improved performance.

Multi Layer Loss: The final output of our localization network is a segmentation mask where each
pixel is assigned a probability of being a part of an action. To train the network, we compute a Binary
Cross Entropy (BCE) loss, where each pixel can have a probability between zero (no activity) and one
(activity). As our network is deep, only calculating the loss at the final layer affects the convergence
time and the gradient update values for earlier layers. Hence, we apply the segmentation loss at
multiple decoder layers, which improves the features learned in multiple layers and allows for more
distributed backpropagation.

4

For a layer m with N total pixels, the loss is given as:

Lm(ŷ, y) = −1N
N∑
i=0

[yilog(ŷi) + (1− yi)log(1− ŷi)] (1)

where ŷi are predicted probability score of the pixel belonging to an activity and yi are the ground
truth labels of the pixels.

The combined loss for all M layers in the multi layer loss is given by:

Lloc =
M∑
m=1

Lm (2)

Tubelet Extraction: The segmentation output for each clip is a probability mask which isolates
potential action tubes. To obtain individual tubelets from this segmentation output, we threshold the
output to create a binary mask followed by spatio-temporal connected component extraction. The
connected component process will generate tubelets for all spatially and temporally linked pixels.

3.3 Tubelet Classification

The next step in our proposed system is tubelet classification. Our action classification network is a
multi-label prediction network, which classifies the actions present within each tubelet. We treat this
as a multi-label classification problem because actors can perform multiple activities simultaneously.
For example, an actor can perform the actions Riding and activity_carrying at the same time. We use
a 3D-Convolution based deep learning model [9] initialized with pre-trained weights on Kinetics [14]
dataset for action classification. We modify the final layer of the model to have a C + 1 dimensional
output, where C is the number of action classes and the additional output is for the background class.
A sigmoid activation is used in the final layer in place of a softmax as this is a multi-label classifier.
We use BCE loss to train the classifier which is defined as,

Lcls(ŷ, y) = −1C + 1

C∑
i=0

[yilog(ŷi) + (1− yi)log(1− ŷi)] (3)

where ŷi is the prediction and yi is the ground truth label.

3.4 TMAS Algorithm

To merge the tubelets and obtain the final action tubes, we propose the Tubelet-Merge Action-Split
algorithm (TMAS). Each tubelet ti is described as follows:

(
f i
1, f

i
2,bi, aic

)
where f i

1 is the start time,
f i
2 is the end time, bi are the bounding boxes for each frame of the tubelet, and ai

c are the frame-level
action probability scores for each action class c ∈ {0, 1, ...C}, where 0 is background. First, we
merge the tubelets into action-agnostic tubes of varying length; then we split these action-agnostic
tubes into a set of action-specific tubes which contain the spatio-temporal localizations for the various
activities in the video.

Tubelet-Merge The procedure to merge tubelets into action-agnostic tubes is described in Algo-
rithm 1. The temporally sequential stream of tubelets coming from the classification network are
passed to the Tubelet-Merge procedure as input. The set of candidate tubes is initialized with the first
tubelet. For each subsequent tubelet, we look for spatio-temporal overlap with the existing candidate
tubes. This results in four possible outcomes: 1) If there is no overlap, the tubelet itself becomes a
new candidate tube, 2) If there is a unique match found between a candidate tube and the tubelet,
they are merged and become a new candidate tube, 3) if the tublet has an overlap with multiple
candidates, then the tubelet becomes a new candidate, 4) if multiple tublets have an overlap with a
single candidate tube, then the tubelet with the highest overlap is merged with that candidate and the
other tubelets become separate candidate tubes. Once all tubelets are checked, the candidate tubes
become the final action-agnostic tubes.

Action-Split From the action-agnostic tubes we obtain action-specific spatio-temporal localizations
using the Action-Split procedure described in Algorithm 2. We start by smoothing out per-frame

5

Algorithm 1 The Tubelet-Merge algorithm which merges tubelets into action-agnostic tubes. The
CHECKEND function determines if a candidate tube becomes a final tube or is merged with another
candidate.

Input: A stream of tubelets, S, from the classifier
Output: A set of action-agnostic spatio-temporal tubes, Tdone
Notation: Intertemp calculates temporal overlap between tubelets.
|M[(tc, ∗)]| returns the cardinality of the set {t : M[(tc, t)] > 0}.

1: procedure TUBELET-MERGE(S)
2: Tprev, Tdone ← {} . Initialize candidate and final tubes
3: M← initializehashtable
4: while tcinS do . Continue until the stream of tubelets ends
5: for all tpinTprev do
6: if Intertemp(tp, tc) > 0 then
7: M[(tp, tc)]← IoU(tp, tc)
8: else
9: CHECKEND(tp, Tprev , M)

10: append tc to Tprev . Tubelet becomes a candidate tube
11: while Tprevisnotempty do . Deals with remaining candidates
12: tp ← Tprev[0]
13: CHECKEND(tp, Tprev , M)
14: return Tdone
1: function CHECKEND(tp, Tprev,M)
2: if |M[(tp, ∗)]| == 0 then
3: MOVE(tp, Tprev , Tdone) . Moves tp from Tprev to Tdone
4: else if |M[(tp, ∗)]| == 1 then
5: ti ← maxti M[(tp, ti)]
6: if |M[(∗, ti)]| == 1 then
7: MERGE(tp, ti, Tprev , M)
8: else
9: MOVE(tp, Tprev , Tdone)

10: else
11: ti ← maxti M[(tp, ti)]
12: MERGE(tp, ti, Tprev , M)

1: function MERGE(t1, t2, Tprev,M) . Merges two candidate tubes
2: t1 ← (f1

1 , f
2
2 , {b1, b2}, {a1, a2}) . {} is concatenation

3: removet2fromTprev
4: M[t1, ti]← M[t2, ti] . DoneforalltiwhereM[t2, ti] ≥ 0

action confidence scores; which accounts for fragmentation caused by action miss-classifications.
Then we build the action-specific tubes by checking for continuous occurrences of each action class;
this allows several occurrences of the same activity to occur within a single tube. For instance, a
person walking might stop and stand for several seconds and start walking again; this entire sequence
will be contained in a single spatio-temporal tube, but the Action-Split procedure will correctly
generate two separate instances of activity_walking and one instance of activity_standing. To be
robust to classification errors, action tubes with the same action label that are within a limited temporal
neighborhood are combined together to form a single continuous action prediction.

Runtime Complexity The worst-case runtime of our TMAS algorithm is O
(
n2

)
, where n is the

total number of candidate tubes at any given time. However, we sequentially process our tubelets and
constantly shift the candidate tubes which can not have any possible future match to the set of final
tubes. Therefore, the set of candidate tubes at any particular time is reasonably small and our TMAS
algorithm contributes negligible overhead to our system’s overall computation time.

4 Experimental Setup

4.1 DIVA Dataset

The DIVA dataset is a large-scale spatio-temporal action detection dataset with untrimmed surveil-
lance videos. It consists of videos from the VIRAT [17] dataset with added annotations for action

6

Algorithm 2 The Action-Split algorithm which converts the action-agnostic tubes into action-specific
predictions.

Input: A set of action-agnostic tubes, T , and a set of actions, C
Output: A set of spatio-temporal action-specific tubes, AG
Notation: aic[f] and ti[f] contain the action prediction scores and tube information at frame f , respectively.

1: procedure ACTION-SPLIT(T)
2: AG ← {} . Initializes the action-specific tubes
3: for all tiinT do
4: tsmooth ← SMOOTH(ti)
5: for all cin1 : C do . Loop through each action class
6: aL ← EXTRACT (tsmooth, c)
7: appendaLtoAG
8: return AG
1: function SMOOTH(ti)
2: for all finf i1 : f i2 do
3: aic [f]← 1

2τ+1

∑τ
k=−τ a

i
c [f + k]

4: return ti
1: function EXTRACT(ti, c) . Extracts tubes of a specific class
2: AL, al ← {} . Initialize extracted action tubes and a placeholder
3: count← 0
4: for all finf i1 : f i2 do
5: if aic[f] > α then . Continue current action tube
6: appendti[f]toal
7: count← 0
8: else
9: count← count+ 1

10: if count > β then . Current action tube is finished
11: appendaltoAL
12: al ← {}, count← 0

13: removetubesshorterthanγfromAL
14: return AL

detection. There are 64 videos (2.47 hours) in training and 54 videos (1.93 hours) in the validation
set, with annotations for all the activities. There are 246 videos (10.11 hours) in the held out test
set for which the annotations are not made public. There are 40 different types of activities in the
dataset which can be broadly categorized into activities involving only people, activities involving
only vehicles, and activities involving both people and vehicles. Of these 40 classes only 18 classes
are used for evaluation of the system: activity_carrying, vehicle_turning_right, vehicle_turning_left,
Closing, Opening, Exiting, Entering, Talking, Transport_HeavyCarry, Unloading, Pull, Loading,
Open_Trunk, Closing_Trunk, Riding, specialized_texting_phone, specialized_talking_phone, and
vehicle_u_turn. Remaining classes are considered hard_negative, or background. Videos in this
dataset are captured from surveillance cameras mounted on buildings, mostly overlooking parking
lots or streets, where the activities take place. All videos are high resolution, either 1920× 1080 or
1280× 720, with variation in scale, orientation of objects, and camera viewpoints.

4.2 Training Details

Network Training DIVA videos are high resolution and it is not feasible to train a localization
model at that scale. Therefore, we rescale the videos to a lower resolution of 800 × 448, while
maintaining the aspect ratio. A stack of 16 frames is fed to the localization network to obtain the
binary segmentation masks. The network is trained using SGD [22], with a learning rate of 1e− 3
for about 100000 iterations. Our classification model is trained with a clip length of 16 frames (with
a skip rate of 1 to obtain a second long clip) and a spatial-resolution of 112 x 112. We use the ADAM
optimizer [15] with a learning rate of 1e-4 to train the classifier for 75000 iterations on a single
NVIDIA GeForce Titan X GPU.

Data Pre-processing For the data used in training the localization network, we apply random
frame jitter and crop to simulate shaking cameras and changes in scale. These augmentations add
variation to the training data, and greatly reduces overfitting.

7

Model IoU
Baseline 0.540
Baseline+FPN 0.572
Baseline+FPN+MLL 0.613
Baseline+FPN+MLL+Atrous 0.628

Table 1: Ablation experiments to study the effect of different components of the localization network.

The spatial resolution of activity tubelets can be of any size, but the input to the classification model
is fixed. To address this issue we crop a square region encompassing the activity within the tubelet
and rescale it to the size expected by the classification model. This approach helps us in maintaining
the aspect ratio of the objects in the input clips. In temporal domain, the activity tubelets can be
of arbitrary length, so we extract multiple clips by applying a sliding window over the length of
the entire tubelet. To train the classification model, clips are generated using both the ground-truth
annotations as well as the tubelets from the localization network. This increases the amount of
training data seen by the classifier, allowing for improved performance on the test set. Training clips
from the localization model that do not contain any of the 18 activity classes used for evaluation are
labelled as hard_negative.

One of the challenging issues with the DIVA dataset is data imbalance. Refer to Figure 3 for dis-
tribution of per-class action instances/frames from DIVA ground-truth training set. Since clips are
extracted using a sliding window, the class imbalance is further exasperated for longer, repetitive
activities like activity_carrying and Riding as well as shorter, atomic activities like Loading, Un-
loading, Entering, and Exiting. To overcome this issue, we use augmentation techniques such as
multi-scale cropping, frame reversal, spatial-jittering, and flipping of frames along the vertical axis.
In multi-scale cropping we randomly crop a region around the center of a clip at different scales to
simulate zoom-in and zoom-out effect to have actors/objects at different scales. We reverse the order
of frames in a clip to generate new clips for specific pairs of classes such as (Opening, Closing),
(Loading, Unloading), (Entering, Exiting), and (Open_Trunk, Close_Trunk) to increase the number
of samples for these classes. With spatial-jittering we simulate camera shake due to wind, which
occasionally occurs in test videos.

5 Results

In this section we present evaluation results of individual components in the proposed architecture
and discuss the overall system performance.

5.1 Localization

We run several ablations to evaluate the effect of the different components - feature pyramid, atrous
convolution, and multi-layer loss - of our localization network. Table 1 shows the performance of
different variations of our action localization network on the DIVA validation set in terms of IoU
scores. The baseline network is an I3D based encoder-decoder architecture with skip connections.
The addition of these components improves our IoU scores considerably.

5.2 Classification

We experiment with multiple classification models to determine the optimal network architecture
for our system. A comparison of their performance on the validation set is shown in Table 2. We
use average F1-Score as a metric to compare the different models. For a fair comparison, all models
are initialized with pre-trained weights on the Kinetics dataset [14] and are trained with the same
settings. We observe that the 3D-ResNet based model, WideResNet-50 [9], outperforms the other
architectures.

We also analyze the class level performance of the classification model on the validation set. The
results using our final classification model are shown in Figure 3. We can observe that our network
performs better on longer activity classes such as Riding and activity_carrying with higher number
of training samples when compared to shorter activity classes like Unloading and Loading which
have fewer samples. Activity classes specialized_texting_phone, specialized_talking_phone have the

8

Architecture Precision Recall F1-Score
I3D [2] 0.36 0.31 0.33
R(2+1)D [26] 0.43 0.39 0.40
P3D [20] 0.43 0.41 0.41
3D-ResNet [9] 0.46 0.43 0.44

Table 2: Average Precision, Recall and F1-score on DIVA validation set with different network
architectures for classification. We use pre-trained weights on Kinetics dataset [14] to initialize all
these models before training.

Figure 3: Number of samples per class and F1-Score achieved by the trained classifier on the DIVA
validation set. The size of each bubble indicate the number of frames for an activity class. The exact
numbers are indicated next to the activity name in the legend on the right.

lowest F1-Score as these have considerably fewer samples and appear very similar to activity_standing
which is a background activity. Qualitative results of our system are included in Figure 4.

5.3 System Evaluation

Metrics We evaluate the performance of our system using several metrics: probability of missed
detection at fixed rate of false alarm per minute (Pmiss@RFA), probability of missed detection at
fixed time-based false alarm per minute (Pmiss@TFA), and partial area under the Detection Error
Tradeoff curve (AUDC). These measure the quality of action detections both temporally, for the
action detection (AD) task, and spatio-temporally, for the action-object detection (AOD) task. To
calculate these metrics, a one-to-one correspondence is found between the ground-truth actions and
the detected actions; ground-truth actions without a corresponding detection are missed detections,
while detections without corresponding ground-truth actions are false alarms. For more detailed
explanations of the different evaluation metrics as well as evaluation code, we refer to TRECVID
2020 [1].

Comparison We train our pipeline on the VIRAT dataset with training set of TRECVID 2020 [1]
split. The comparison with the other methods are shown in Table 3, which is reported on the
TRECVID ActEV 2020 Evaluation leaderboard.

Acknowledgements

This research is based upon work supported by the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA R&D Contract
No. D17PC00345. The views and conclusions contained herein are those of the authors and should

9

Figure 4: Qualitative results of our system on some sample validation videos. This demonstrates the
ability of our system to handle varying scenes, object scales, and action types.

Rank Team name System name Partial
AUDC*

mean-p_
miss@0.15tfa

mean-w_p_
miss@0.15rfa

1 INF INF 0.42307 0.33241 0.80965
2 BUPT-MCPRL MCPRL_S1 0.55515 0.48779 0.84519
3 UCF UCF-P 0.58485 0.5473 0.8354
4 TokyoTech_AIST TTA-SF2 0.79753 0.75502 0.87889
5 CERTH-ITI P 0.86576 0.84454 0.88237
6 Team UEC UEC 0.95168 0.95329 0.983

7 kindai_kobe kindai_ogu
_baseline 0.9682 0.96443 0.95665

Table 3: Comparison of methods tested on NIST TRECVID-2020 evaluation set

not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon.

References
[1] George Awad, Asad A. Butt, Keith Curtis, Yooyoung Lee, Jonathan Fiscus, Afzal Godil, Andrew Delgado,

Jesse Zhang, Eliot Godard, Lukas Diduch, Jeffrey Liu, Alan F. Smeaton, Yvette Graham, Gareth J. F. Jones,
Wessel Kraaij, and Georges Quénot. Trecvid 2020: comprehensive campaign for evaluating video retrieval
tasks across multiple application domains. In Proceedings of TRECVID 2020. NIST, USA, 2020.

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset.
In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6299–6308,
2017.

[3] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[4] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder
with atrous separable convolution for semantic image segmentation. In Proceedings of the European
conference on computer vision (ECCV), pages 801–818, 2018.

[5] Kevin Duarte, Yogesh Rawat, and Mubarak Shah. Videocapsulenet: A simplified network for action
detection. In Advances in Neural Information Processing Systems, pages 7610–7619, 2018.

[6] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition, 2018.

[7] Joshua Gleason, Rajeev Ranjan, Steven Schwarcz, Carlos Castillo, Jun-Cheng Chen, and Rama Chellappa.
A proposal-based solution to spatio-temporal action detection in untrimmed videos. In 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE, 2019.

[8] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra
Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, et al. Ava: A video dataset of
spatio-temporally localized atomic visual actions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6047–6056, 2018.

[9] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the history of 2d
cnns and imagenet? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[10] Rui Hou, Chen Chen, and Mubarak Shah. An end-to-end 3d convolutional neural network for action
detection and segmentation in videos. arXiv preprint arXiv:1712.01111, 2017.

10

[11] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban, Ivan Laptev, Rahul Sukthankar, and Mubarak
Shah. The thumos challenge on action recognition for videos “in the wild”. Computer Vision and Image
Understanding, 155:1–23, 2017.

[12] Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Ferrari, and Cordelia Schmid. Action tubelet detector for
spatio-temporal action localization. In Proceedings of the IEEE International Conference on Computer
Vision, pages 4405–4413, 2017.

[13] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei.
Large-scale video classification with convolutional neural networks. In Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR ’14, pages 1725–1732, Washington, DC,
USA, 2014. IEEE Computer Society.

[14] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset. arXiv
preprint arXiv:1705.06950, 2017.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[16] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6399–6408,
2019.

[17] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen, Jong Taek Lee, Saurajit
Mukherjee, JK Aggarwal, Hyungtae Lee, Larry Davis, et al. A large-scale benchmark dataset for event
recognition in surveillance video. In CVPR 2011, pages 3153–3160. IEEE, 2011.

[18] Xiaojiang Peng and Cordelia Schmid. Multi-region two-stream r-cnn for action detection. In European
conference on computer vision, pages 744–759. Springer, 2016.

[19] A. J. Piergiovanni and Michael S. Ryoo. Temporal gaussian mixture layer for videos. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, pages 5152–5161, 2019.

[20] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-temporal representation with pseudo-3d residual
networks. In proceedings of the IEEE International Conference on Computer Vision, pages 5533–5541,
2017.

[21] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In Advances in neural information processing systems, pages 91–99, 2015.

[22] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

[23] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition in
videos. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages 568–576. Curran Associates, Inc., 2014.

[24] Gurkirt Singh, Suman Saha, Michael Sapienza, Philip HS Torr, and Fabio Cuzzolin. Online real-time
multiple spatiotemporal action localisation and prediction. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3637–3646, 2017.

[25] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spatiotemporal
features with 3d convolutional networks. In The IEEE International Conference on Computer Vision
(ICCV), December 2015.

[26] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer look at
spatiotemporal convolutions for action recognition. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 6450–6459, 2018.

[27] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[28] Zhenheng Yang, Jiyang Gao, and Ram Nevatia. Spatio-temporal action detection with cascade proposal
and location anticipation. arXiv preprint arXiv:1708.00042, 2017.

[29] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo Andriluka, Greg Mori, and Li Fei-Fei. Every
moment counts: Dense detailed labeling of actions in complex videos. International Journal of Computer
Vision, 2017.

11

	Introduction
	Literature Review
	Methodology
	Overview
	Localization Network
	Tubelet Classification
	TMAS Algorithm

	Experimental Setup
	DIVA Dataset
	Training Details

	Results
	Localization
	Classification
	System Evaluation

