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Abstract

In this paper, we describe our approach for TRECVID
2020 DSDI task. This task requires to propose a system
to output a ranked list of the top-k video clips that include
the given disaster features. We treat this task as a multi-
label multi-class classification problem by assigning pre-
dicted disaster features for the given frames and aggregat-
ing the frame-level labels to the video clip level labels for
listing the ranked clip level result. LADI is used as our
training dataset, that is a large scale disaster aerial image
dataset with long-tail distribution, high-resolution and mul-
tiple noisy labels per image. To utilize LADI with consider-
ation of handling the above characteristics, we propose a
solution consisted of three parts: (1) Label encoding for
smoothing the multiple annotations to reduce the noisy la-
bel propagation. (2) Incorporating a cost function based on
Focal Loss for tackling the imbalanced data distribution.
(3) Leveraging recently proposed efficient network archi-
tectures for dealing with high-resolution images as input.
Furthermore, we combine these techniques with team NII-
ICT AutoML solution, and also report the fusion results of
ours with team NIIICT and NII UIT, that reached a top mAP
with 0.383 under the evaluation setting as training data with
LADI-only track.

1. Introduction

In recent years, many large-scale visual recognition com-
petitions (e.g. PASCAL VOC challenge [4], ILSVRC [19],
Microsoft COCO Challenge [12], Google Landmark Chal-
lenge [26]) have been held vigorously all over the place.
Among these image competitions, TRECVID (TREC Video
Retrieval Evaluation) [1] has a long history as a compe-
tition that started in 2001 and has continued to this day.
This large-scale video retrieval evaluation competition is
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Figure 1. A sample image from the LADI dataset. This image is
labeled by 6 annotators as [flood/water, flood/water, smoke/fire,
flood/water, flood/water, damage: none]. We pre-processed these
labels into one soft-label with normalization. In the soft-label vec-
tor, each class has a following value as ground truth confidence:
{flood/water class,1.0}, {smoke/fire,0.25}, {damage:none,0.25},
the rest 34 classes are 0.

hosted by NIST (National Institute of Standards and Tech-
nology) and the purpose of this competition is to encour-
age research in information retrieval by providing a large
train/test dataset, uniform scoring procedures, and a forum
for organizations interested in comparing their results.

From this year, TRECVID launched a new task enti-
tled DSDI (Disaster Scene Description Indexing), which re-
quired to propose a system to output a ranked list of the
top-k video clips that include the given disaster feature. We
developed a system with a multi-label multi-class classifi-
cation model, that assign predicted disaster features for the
given frames and aggregate the frame-level labels to the
video clip level labels for listing the ranked clip level result.

In this task, a dataset LADI (Low Altitude Disaster Im-
agery) [13] that contains 638K aerial images are provided
for using. In LADI, there are 40K images labeled by AMT
(Amazon Mechanical Turk) workers to support the develop-
ment of computer vision capabilities for aerial images anal-
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Figure 2. Overview of our pipeline for TRECVID DSDI 2020.

ysis. LADI is a large scale disaster aerial image dataset
with long-tail distribution for 37 classes, high-resolution
and multiple noisy labels per image.

To deal with these characteristics in our system, we de-
veloped a solution that incorporates three techniques for
training the multi-label multi-class classifier: (1) Label en-
coding for smoothing to reduce the noisy label propagation.
(2) Incorporating a cost function based on Focal Loss for
tackling the imbalanced data distribution. (3) Leveraging
recently proposed efficient network architectures for deal-
ing with high-resolution images as input. In this paper, we
describe these techniques and show the effectiveness of our
solution in the experiment.

The features of our system can be concluded as two
folds:

1) We developed a multi-label multi-class classification
model to assign multiple disaster features to sampled frames
from the video clip for predicting clip level feature index.

2) We proposed to train the classifier under the smoothed
soft labels with a Focal Loss based cost function for dealing
with class imbalanced problem in the train set, and further
improve the performance by a score level model ensemble.

2. Proposed Solution
We first train a multi-label multi-class classifier for pre-

dicting the disaster feature index to the given frame. Then
we sampled the frames from the given disaster video clip
and predict the confidence score for each disaster feature
index of the sampled frames by using the trained classifier.
Video clip level confidence score for the given feature index
is performed by fusing the frame level scores of it. Finally,

top-k video clips that include the given disaster feature are
sorted by using the clip level confidence scores.

Thus our system can be divided into two phases, a multi-
label multi-class classifier training phase (Section 2.1-2.4),
and a top-k video clip ranking phase (Section 2.5) for the
given disaster feature index. The overview of our system is
shown in Fig. 2.

2.1. Label Encoding for Noisy-annotated Labels

In LADI dataset, each image is annotated by multiple
AMT workers and has multiple annotation labels. A sam-
ple image with annotated labels is shown in Fig. 1. In a
multi-label dataset, however, a noisy-label problem often
occurs because annotators cannot correctly label all classes
when the class number is large. Such noisy-label problems
are also found in LADI dataset. Therefore, for suppressing
the annotation noise, we preprocessed annotated labels into
one soft-label for each image by counting the number of oc-
currences for each class and using these numbers as ground
truth confidence. From this method, we can simultaneously
mitigate the mislabeled class (e.g. ”damage: none” in Fig.
1) and capture the unconfident label class (e.g. ”damage:
smoke” in Fig. 1) as low confidence. For normalization,
the values of the soft-label vector are created from being di-
vided by the max number of occurrences in the vector. We
use these smoothed soft labels vectors as ground truth con-
fidence in our experiments.

2.2. Focal Loss Variants for Imbalanced Dataset

When training with a class imbalanced dataset, scarce
classes cannot be captured well with normal cross-entropy
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loss, because the learned models are highly biased towards
abundant classes. Therefore, many approaches have been
proposed to solve the problem by assigning weights to
scarce classes.

Focal Loss [11] is one of the approaches proposed in
object detection field. In Focal Loss, the losses of scarce
classes are weighted with a hyper-parameter, and we can si-
multaneously learn abundant classes and scarce classes by
controlling the hyper-parameter. In addition to the Focal
Loss, we adopted two variants cost function of Focal Loss
for our systems: (1) Class-Balanced Loss [3], which the-
oretically considers the weighting balance between abun-
dant classes and scarce classes. (2) Reduced Focal Loss
[20], which is designed to control the accuracy trade-off be-
tween scarce classes and abundant classes using different
loss curves.

Moreover, the original Focal Loss is designed for learn-
ing with single ground truth label per sample, thus we have
modified the Focal Loss function to be adapted for being
capable of treating soft multi-label learning as follows:

FL(p̂i) = −
C∑
i

(1− p̂i)γ log p̂i, (1)

where, p̂i = 1− |yi − pi| (2)

where, pi represents model’s predicted sigmoid value for
i-th class and yi represents the soft ground truth label of i-
th class for the given image. C is the number of disaster
features (class number). γ is a tunable focusing parameter
used in Focal Loss. For Class-Balanced Focal Loss(CBFL)
and Reduced Focal Loss(RFL), we performed the similar
modification as follows:

CBFL(p̂i) = −
C∑
i

1− β
1− βny

(1− p̂i)γ log p̂i (3)

RFL(p̂i) = −
C∑
i

(w1 log p̂i + w2(
1− p̂i
th

)γ log p̂i (4)

where, w1 =

{
1 (pi > th)
0 (pi <= th)

(5)

w2 =

{
1 (pi <= th)
0 (pi > th)

(6)

where, β, th, ny are the hyper-parameters used for control-
ling the accuracy trade-off between the abundant classes
and the scarce classes. The frequency ny of each class used
in Class-Balanced Loss are calculated based on the number
of samples of all 37 classes from all 40K annotated images
shown in Table 1. We trained various models with differ-
ent hyper-parameters for controlling the accuracy trade-off
between the abundant classes and the scarce classes.

Table 1. Class number for all 32 classes and 5 none-classes. These
numbers are used in Class-Balanced Focal Loss as ny .

class number
damage (misc) 24009

flooding / water damage 33120
landslide 2237

road washout 3613
rubble / debris 18186

smoke / fire 1756
dirt 11866

grass 19623
lava 67

rocks 1067
sand 2565

shrubs 13513
snow/ice 116

trees 21183
bridge 3132

building 15133
dam / levee 616

pipes 554
utility or power lines / electric towers 10612

railway 742
wireless / radio communication towers 1136

water tower 749
road 16333

aircraft 201
boat 2500
car 13846

truck 7579
flooding 4077

lake / pond 5879
ocean 3029
puddle 2386

river / stream 7362
damage: none 98412

environment: none 6748
infrastructure: none 11814

vehicle: none 15420
water: none 13902

2.3. Backbones for High-Resolution Images

We use three network architectures as backbones:
ResNeSt [29], HRNetV2 [21, 22, 25], and RegNet [17, 18].
In high-resolution images, an effective attention mechanism
is crucial for creating a good recognition system. There are
many proposed architectures which incorporating spatial at-
tention mechanism (e.g. SENet [7], Attention Branch Net-
work [5], ResNeSt [29]). In our experiments, we have tried
many backbone architectures [5–7, 9, 14, 18, 22, 23, 27, 29]
and ResNeSt backbone got the best accuracy in all architec-
tures. Thus we selected ResNeSt as a default backbone.
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Table 2. Summary of our created models. γ, β, th are the hyper-parameters of each imbalanced loss. LRAP is a label ranking AP score of
local validation dataset, created by scikit-learn [16]. LRAP score is just a reference, as each model is trained with different training split.
We use Model A01-C12 for creating our final ensemble models. Model-D13 is used as NII UIT 2, expecting domain adaptation effect.

Index Architecture Focal Class-Balanced Reduced Other Techniques LRAP
A01 RegNet-6.4F γ : 2.0 - - - 0.846
B02 HRNet-W18 γ : 2.0 - - Input resolution: 448*448 (default: 360*360) 0.854
C03 ResNeSt-50d γ : 2.0 β : 0.999 - - 0.844
C04 ResNeSt-50d γ : 2.0 β : 0.9999 - - 0.853
C05 ResNeSt-50d γ : 2.0 - th : 0.3 - 0.852
C06 ResNeSt-50d γ : 2.0 - th : 0.5 - 0.844
C07 ResNeSt-50d γ : 2.0 - th : 0.7 - 0.846
C08 ResNeSt-50d γ : 2.0 - - Multiply the losses of none-classes by 0.1 0.837
C09 ResNeSt-50d γ : 2.0 - - Multiply the losses of none-classes by 0.01 0.825
C10 ResNeSt-50d γ : 2.0 - - Snapshot Ensemble of Model-C09 0.823
C11 ResNeSt-50d γ : 2.0 - - Outlier removal technique 0.843
C12 ResNeSt-50d γ : 2.0 - - Symmetric Lovasz Loss with square root scaling 0.849
D13 SE-IBN-ResNet50 γ : 2.0 - - - 0.824

Figure 3. Results of L (only LADI data) section. Our submissions rank as 1st-5th and 15th places in all 21 submissions.

Furthermore, these aerial images sometimes include
small object classes (e.g. car, boat, building, bridge). There-
fore, it is necessary to recognize each tiny object from high-
resolution images. For recognizing these high-resolution
images, there are many proposed architectures (HRNetV1
[21, 25], HRNetV2 [22]) in object detection/segmentation
tasks, which need more high-resolution accuracy than in
classification tasks. From these models, we selected HR-
NetV2 as one backbone. In addition to ResNeSt and HR-
NetV2, we also selected RegNet backbone which controls
depth/width/resolution scaling more effectively than Effi-
cientNet [23]. In our experiments, We used these various
backbones as listed in Table 2.

2.4. Other Training Techniques

In addition to the approaches mentioned in section 2.1-
2.3, we have incorporated various training techniques for
creating more diversity in ensembling. The approaches are
as follows: (1) Snapshot Ensemble [8] (2) Symmetric Lo-
vasz Softmax Loss [2,28] (3) Outlier removal technique (4)
Multiplying the losses of 5 none-classes by a small value
for recognizing 32 classes more efficiently. In this section,
we especially describe our outlier removal technique.

In LADI dataset, there are some outlier images that have
annotated labels like normal images. These sample images
are shown in Fig. 5. Using these outlier images with anno-
tated labels, however, have a bad effect on training, because
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Figure 4. Detailed results of our 1st ranked submission (VAS 2). Class-wise mAP score are presented with all submissions’ median/best
mAP scores.

Figure 5. (above) sample normal images and (below) sample out-
lier images from LADI dataset. These images are selected from
40K labeled images.

these annotated labels will be incorrect since the outlier im-
ages represent no classes. Therefore, we introduced an au-
tomatic outlier removal technique. In automatic outlier re-
moval, we always remove the max loss value in each mini-
batch losses from the summation of losses. The idea behind
this approach is as follows: If the models have learned each
class correctly, the loss of each outlier image will have a
high value. Using this approach, we created Model-C11
listed in Table 2.

2.5. Shot-clips Ranking and Ensemble Method

For processing test shot-clips, we encoded each shot-clip
into image frames using ffmpeg with 10fps. After created
frames from all test shot-clips, we produce the sigmoid out-
puts for all frames in a shot-clip using trained models, and
selected max confidence value as the output for each feature

in a shot-clip.
These shot-clip level confidence scores for the given fea-

ture index are merged by fusing the frame level scores of
it. Finally, top-k video clips that include the given disaster
feature are sorted by using the clip level confidence scores.

For ensemble, we created various models using tech-
niques explained in section 2.1-2.4, and selected 10 or 12
models from the created models (See Table 3). After se-
lected 10 or 12 models, the sigmoid outputs of these models
are merged with equal weight for test shot-clip inference.
In Table 2, we summarize the methods used in our experi-
ments.

Table 3. Details of our submission results. All runs are performed
under trained with only LADI dataset as TYPE L.

submission mAP description
VAS 2 0.383 10 models + NIIICT model (2:1)

NII UIT 1 0.374 10 models + NIIICT model (5:1)
VAS 4 0.360 12 models ensemble
VAS 1 0.359 VAS 4 + VAS 3 ensemble
VAS 3 0.355 10 models ensemble

VAS LateSub1 0.338 Model-C03 (single model)
NII UIT 2 0.248 Model-D13 (single model)

3. Experiments
In this section, we present our experimental setting and

results.
Experimental setting: We conducted our experiments

under the following setting: (1) Data augmentation: Re-
sized to 360 × 360 (only for HRNet-W18, resized to 448
× 448), RandomHorizontalFlip, RandomVerticalFlip, Ran-
domRotation, and ColorJitter with PyTorch [15] default pa-
rameters. (2) Train batch size: 28 (3) Epoch: 40 (for snap-
shot ensembling, we trained Model-C09 in Table 2 for 300
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Figure 6. Results of L + O (LADI + external data) section. Our submissions rank as 4th-8th and 23th places in all 30 submissions.

epochs and selected the last epoch model as Model-C10.)
(4) Dataset split ratio: 80% (train) and 20% (validation)
(5) Other hyper-parameters: same as used in IBN-Net [14]
GitHub repository*1. All our models are trained and tested
on 1 GPU (GeForce RTX 2080Ti).

Results: Fig. 3 shows the L (LADI-only) section results
and Table 3 shows the test scores for all of our submissions.
In Table 3, ”10 models” we used for ensemble are consist
of Model A01-C04/C06-C09/C11-C12 described in Table
2. ”12 models” are also an ensemble system by using the
model from A01-C12 in Table 2. We collaborated with
team NII UIT and reported the fusion system’s result as
submission file NII UIT 1, that also will be reported in team
NII UIT’s paper [24]. Specifically, VAS 2 and NII UIT 1
system are two fusion systems that consist of 10 models
from VAS and a single model from NIIICT AutoML so-
lution with different weighting parameter 2:1 and 5:1, re-
spectively. The detail of NIIICT’s solution can be referred
in their reports [10]. Overall, 21 runs are submitted to L
(only LADI data) section and our submissions rank as 1st-
5th/15th places in all 21 submissions.

In Fig. 4, class-wise mAP scores of our 1st ranked
submission (VAS 2) are presented with other teams’ mAP
scores. As a whole, our 1st ranked model achieved good
performance in all 32 classes.

For reference, we present all teams’ scores including O
(LADI + external data) section in Fig. 6. In spite of using
only LADI dataset, our models achieve competing results

*1: https://github.com/XingangPan/IBN-Net

with the models trained with additional external datasets.
In addition, we used only 40K labeled images and did not
use other 598K unlabeled images in this competition.

4. Conclusion and Acknowledgement
In this paper, we presented our approach for TRECVID

2020 DSDI task. We used LADI as our training dataset, that
is a challenge dataset with noisy-annotated labels, imbal-
anced samples per class and high-resolution images includ-
ing tiny objects. Our proposed system is designed to over-
come the above challenges, and the fusion system of ours
and team NIIICT achieved a top accuracy under a training
data with LADI-only track.

This work is a cooperation with team NIIICT and
NII UIT. We appreciate Shoichiro Iwasawa et al. from NI-
IICT for providing their AutoML solution as a part of the
fusion system and also appreciate the advice and supports
from Shin’ichi Satoh of team NII UIT for the technical dis-
cussion and system submissions.
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