# Automatic Caption Generation for Video Clips Using Keyframe and Document Summarization Techniques

<u>Masaki Hoshino</u> Takashi Yukawa Team KsLab\_NUT, Nagaoka University of Technology

### 1. Introduction

The VTT task requires to generate a single sentence that describes the content from a video. We aims to generate caption with high precision and at the same time significantly reduces the number of frames used for the processing.

We propose a method that combines the generation of captions from keyframes extracted from a video with a technique to summarize them as a document.

## 2. Approach

System consists of three steps: keyframe extraction, caption generation, and caption aggregation.



Figure 1. Our approach overview

#### 1. Keyframe extraction step

The keyframes are extracted using Kernel Temporal Segmentation (KTS).

#### 2. Caption generation step

Captions are generated for each key frame using the NIC model.

#### 3. Caption aggregation step

Output a single caption using the extractive method used in video summarization tasks. We compared the performance of two extractive methods, BERTSUM and LexRank.

### 3. Results

Table 1. Our Method Scores (VTT 2020 data)

Table 3. Scores by VTT2020 participating teams

| Run                                              | METEOR          | CIDEr   | Team           | METEOR | CIDEr |
|--------------------------------------------------|-----------------|---------|----------------|--------|-------|
| run1.bsum.primary                                | 0.195           | 0.137   | RUC AIM3       | 0.310  | 0.538 |
| run2.lex065                                      | 0.210           | 0.137   | PicSOM         | 0.262  | 0.319 |
|                                                  |                 |         | MMCUniAugsburg | 0.202  | 0.140 |
| Table 2. Average frames per video (VTT2020 data) |                 |         | KsLab_NUT      | 0.195  | 0.137 |
|                                                  | Use whole frame | Our run | IMFD_IMPRESEE  | 0.194  | 0.087 |
| Number of frames                                 | 147             | 5       | KU_ISPL        | 0.191  | 0.074 |

# 4. Conclusion

From Table 1, proposed method achieves similar scores to many of the other teams' methods. Also, there was no significant difference in the scores between BERTSUM and LexRank. Table 2 shows that the proposed method reduces the processing frames by **96.6%** on average compared with the method using all video frames.

For further improvements in accuracy, possible approaches include revising KTS parameters, using abstractive methods to aggregate captions into a single caption rather than extracting a single sentence, and modifying the dataset used to train the NIC model.