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Abstract

In TRECVID 2021 ActEV task, we tackle multi-scale multi-instance activity
detection in extended videos with the CMU Argus++ [28] video understanding
framework. The proposed method was the first to generate overlapping spatio-
temporal cube proposals to ensure the coverage of activities in untrimmed video
streams, instead of conventional non-overlapping cube or tube proposals. The well-
designed four-stage framework achieves an ideal trade-off between computation
cost and performance, achieving state-of-the-art performance within real-time on
consumer-level hardware. The proposed system achieved the best performance on
the TRECVID 2021 challenge live leaderboard 1, where efficiency measurement
and execution verification were missing but would be desired. We further evaluate
our method on the ActEV SDL benchmark series with fully-sequestered data and
ready-to-run system submission. The outstanding performance of Argus++ again
emphasizes its robustness and superiority across a wide range of benchmarks where
it has been leading for years.

1 Introduction

In the past decade, the computer vision community has witnessed a booming development of activity
detection algorithms. In recent years, action detection in extended videos [4, 14] has drawn a widely
attention and brought challenges to the area. Many of the extended videos are unconstrained videos
captured by surveillance cameras in varies different indoor and outdoor scenarios. Activity detection
in extended videos can be much difficult than others, because unconstrained videos usually are
recorded in large field-of-views and contains large number of objects and activities simultaneously
and continuously from time to time.

There are previous works achieving impressive performance on conventional activity detection
[20, 6, 21, 10, 7]. However, most of them cannot work on extended videos. Some of these methods are
only suitable to trimmed videos, i.e., the videos are pre-trimmed to several clips; Some other methods
are designed for object-centered videos, which can only analyze one object at a time. Moreover,
usually, conventional activity detection algorithms are only specified for certain scenarios, such as
person sporting activity, etc. As a result, the performance of such algorithms would significantly
downgrade when being applied to unconstrained videos.

Recent works [19, 27, 13] consider activity detection on unconstrained video as a two-stage algorithm:
First, object detection and/or tracking algorithms are applied to the videos to locate the candidate
objects. Second, the trajectories of the objects are straightforwardly used as tube/tubelete proposals
for temporal activity localization. Simply utilizing trajectories, or so called tubelete proposals as
candidate activity proposals would lose important information of activities, especially the motion

1Snapshot: https://web.archive.org/web/20211115022601/https://actev.nist.gov/
trecvid21#tab_leaderboard.

https://web.archive.org/web/20211115022601/https://actev.nist.gov/trecvid21#tab_leaderboard
https://web.archive.org/web/20211115022601/https://actev.nist.gov/trecvid21#tab_leaderboard


related activities, such as ’vehicle turning right’. Because these tubelete proposals are focused on
objects rather than motion of the objects, they always keep the bounding boxes around the objects.
This would fail to capture important activity information, e.g., the trace of the objects. Another
drawback of tubelete proposals is the object distortion in proposal. After the object detection and
tracking, the video frames are cropped by multi-sized object-centred detection bounding boxes. When
convert it to proposals, these cropped images must be resized into one size. Therefore, the objects in
such proposals will suffer from the distortion problem because bounding boxes shifting and changing
across frames. It will later harm the validity of the proposals in the activity analysis stage. After the
generation of tubelete proposals, most of the previous works still rely on temporal activity localization
to determine the start and end of the activities. Some works [19] generate non-overlapping proposals
by straightforwardly cutting the proposals to several fixed length clips, which obviously would break
the completeness of the activities.

We overcome the aforementioned problems on tubelet proposal activity detection by proposing a
novel cube proposal activity detection system. The proposed system is a four-stage framework:
Proposal Generation, Proposal Filtering, Activity Recognition and Activity Deduplication. In the
system, we propose cube proposal instead of tubelet proposal naively generated from detection results.
In cube proposal generation, we review the object trajectories and merge and crop the area of detected
objects across the frames, such that context activity information, such as object traces, will be kept.
Moreover, we propose a over-sampling method to generate overlapping proposals from the full video,
and apply activity deduplication after recognition to keep both of the completeness and validity of
activities. The proposed system outperforms the tubelet activity detection systems in the TRECVID
ActEV 2021 challenge. The contributions of the proposed system are as follows:

1. We introduce overlapping spatio-temporal cubes as the activity proposals. By over-sampling,
the generation of cube proposals ensures the coverage and completeness of activities in
multi-scale multi-instance videos.

2. We proposed action recognition and deduplication algorithms to optimize the performance
of action detection on cube proposals, which guarantees the validity of the activities.

3. The proposed system has achieved outstanding performance in TRECVID ActEV 2021.

2 Related Work

Object Detection and Tracking Object detection and tracking are fundamental computer vision
tasks that aims to detect and track objects from images or videos. Image-based object detection
algorithms, such as Faster R-CNN [18] and R-FCN [5], have demonstrated convincing performance
but are often expensive to apply on every frame. Video-based object detection algorithms [30, 17]
use optical flow guided feature aggregation to leverage motion information and reduce computation.
With the deep features extracted from the backbone convolutional network, multi-object tracking
algorithms [23, 22] associates objects across frames based on feature similarity and location proximity.

Activity Detection In recent years, there emerged some systems designed for spatio-temporal
activity detection on unconstrained videos [19, 27, 13, 3, 25, 29]. Generally, theses systems first
generates activity proposals and then feeds them to classification models. Since there have been a
variety of video classification networks [20, 11, 6], the major focus is on the paradigm of proposals
and the generation algorithm. In [13, 3], a detection and tracking framework is employed to extract
whole object tracklets as tubelets, where temporal localization is required. In [19], an encoder-decoder
network is used to generate localization masks on fixed-length clips for tubelet proposal extraction,
which has varied spatial locations in different frames.

3 Method

3.1 Activity Detection Task

In this paper, we tackle the activity detection task in unconstrained videos which are untrimmed and
with large field-of-views. Given an untrimmed video stream V , the system S should identify a set of
activity instances S(V) = {Ai}. Each activity instance is defined by a three-tuple Ai = (Ti, Li, Ci),
referring to an activity of type Ci occurs at temporal window Ti with spatial location Li. Li contains
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Figure 1: Architecture of Argus++ [28]. A video stream is processed frame-by-frame through object
detection and tracking to generate overlapping cube proposals. With frame-level foreground seg-
mentation, stable proposals are filtered out. Activity recognition models determine the classification
scores for each proposal. These over-sampled cubes are deduplicated to produce the final activity
instances.

the precise location of Ai in each frame, forming a tube in the timeline. As such, activity detection
can often be decomposed into three aspects, i.e., temporal localization (Ti), spatial localization (Li),
and action classification (Ci).

Each of the three aspects poses unique challenges to the video understanding system. Due to its
multi-dimensional nature, it remains hard to define and build a useful activity detection system under
the strict setting. Therefore, we also evaluates with some loosened requirements. Activity types are
assumed to be either atomic activities within a temporal window (e.g. standing up) or continuous
repetitive activities that can be cut into multiple identifiable windows (e.g. walking). The evaluation
metric allows multiple non-overlapping predictions to be matched with one ground truth.

3.2 Argus++ System

The architecture of the introduced Argus++ [28] system is shown in Figure 1. To tackle the task of
activity detection, we adopt an intermediate concept of spatio-temporal cube proposal with a much
simpler definition than an activity instance:
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i
1, t

i
0, t

i
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This six-tuple design relieves the localization precision and caters modern action classification models
which works on fixed-length clips with fixed spatial window.

For an input video stream, the system first generates candidate proposals with frame-wise information
such as detected objects, which will be covered in Section 3.3. These proposals are filtered with a
background subtraction model as detailed in Section 3.4. Then, action recognition models described
in Section 3.5 are applied on the proposals to predict per-class confidence scores. Finally, Section 3.6
introduces the post-processing stage to merge and filter the proposals with scores and generate final
activity instances.

3.3 Proposal Generation

Starting this section, we introduce each of the components of Argus++. The system begins by
generating a set of cube proposals. They are generated based on information from frame-level object
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detection with multiple object tracking methods. Cubes are sampled densely in the timeline with
refined spatial locations.

Detection and Tracking To conduct activity recognition, we first locate the candidate objects
(in most cases, person and vehicle) in the video. For each selected frame Fi, we apply an object
detection model to get objects Oi = {oi,j | j = 1, · · · , ni} with object types ci,j and bounding
boxes (x0, x1, y0, y1)i,j . Objects are detected in a stride of every Sdet frames. A multiple object
tracking algorithm is applied on the detected objects to assign track ids to each of them as tr i,j .

Proposal Sampling To sample proposals on untrimmed videos without breaking the completeness
of any activity instances, we propose a dense overlapping proposals sampling algorithm. As illustrated
in Figure 2, this method ensures coverage of activities occurring at any time, with no hard boundaries.
Two parameters, duration Dprop and stride Sprop , controls the sampling process. Each proposal
contains a temporal window of Dprop frames. New proposals are generated every Sprop ≤ Dprop

frames, possibly with overlaps. Generally, non-overlapping proposal system can be treated as a
degraded case when Sprop = Dprop .

Figure 2: Dense Overlapping Proposals

Proposal Refinement To generate proposals in a temporal window from t0 to t1 = t0 +Dprop , we
select seed track ids Tr tc from the central frame tc = ⌊ t0+t1

2 ⌋. Their bounding boxes are enlarged as
the union across the temporal window

(x0, x1, y0, y1)k =
⋃

({(x0, x1, y0, y1)i,j | t0 ≤ i ≤ t1, tr i,j = tr tc,k})

k =1, · · · , ntc

(2)

This algorithm is robust through identity switch in the tracking algorithm as it uses the stable seeds
from the central frame. It also ensures the coverage of moving objects by enlarging the bounding box
when it’s successfully tracked. This design is helpful for efficiency optimization by allowing a large
detection stride Sdet . When later applied for activity recognition, the bounding box can be further
enlarged for a fixed rate Renl to include spatial context and compensate for missed tracks.

3.4 Proposal Filtering

For now, the proposal generation pipeline applies a frame-wise object detection with slight aid of
tracking information. The motion information of video is not yet explored. To produce high quality
proposals, we apply a proposal filtering algorithm to eliminate the proposals that are unlikely to
contain activities.

Foreground Segmentation For each proposal, a foreground segmentation algorithm is implemented
to generate a binary mask for every Sbg frames for each video clip. We average the value of pixel
masks in its cube to get its foreground score fi. For proposals generated by object type c, those
proposals with fi ≤ Fc will be filtered out. The threshold Fc is determined by allowing up to Ppos

true proposals to be filtered out.

Label Assignment To determine the above threshold and to train the activity recognition module,
we need to assign labels for each generated proposal according to the ground truth activity instances.
We first convert the annotation of activity instances into the cube format, denoted as ground truth
cubes, by performing dense sampling of duration Dprop and stride Sprop within each instance. For
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Figure 3: Deduplication Algorithm for Overlapping Proposals

each proposal, we estimate the spatial intersection-over-union (IoU) between it and ground truth
cubes in the same temporal window. Then we follow Faster R-CNN [18] in the assignment process:

• For each ground truth cube, assign it to the proposal with the highest score above Tlow.
• For each proposal, assign it with each ground truth cube with score above Thigh.
• For each proposal, assign it as negative if all scores are below Tlow.

Thigh and Tlow are the high and low thresholds. Through this algorithm, each proposal may be
assigned one or more positive labels, a negative label, or nothing. Those assigned nothing are
redundant detections which will not be used in classifier training.

Proposal Evaluation To measure the quality of proposals before and after the filtering, we need a
method for proposal evaluation. This can be achieved by assuming a perfect classifier in the activity
recognition part, so the final metrics reflects the upper bound performance with current proposals.
To do this, we simply use the assigned labels as the classification outputs and pass through the
deduplication algorithm covered later. To further measure other properties of the generated proposals,
we can only pass through a subset of them, such as only those with spatial IoU against ground truth
above 0.5.

3.5 Activity Recognition

In this section, we will elaborately introduce our action recognition modules. Given the input proposal
of an activity instance pi, our action recognition model V will give out the confidence vector ci:

V(pi) = ci = {c1i , c2i , ...cni } (3)

Where n represents the number of target actions, and ci ∈ Rn. Limited by GPU memory size and
temporal length settings of pretrained weights, we need to select t frames out of ti1 − ti0 samples from
the activity instance. To do this, we strictly followed the sparse-sampling strategy mentioned in [21]
for both training and inference stage. To be specific, the video is evenly separated into t segments.
From each segment, 1 frame will be randomly selected to generate the sampled clip.

To transform the action recognition modules from previous multi-class task to the realm of multi-label
recognition, we modified the loss function for optimization. Instead of traditional cross entropy
loss (XE), we implemented a weighted binary cross entropy loss (wBCE). In which, two weight
parameters are adopted, the activity-wise weight Wa = {w1

a, w
2
a, ..., w

n
a} and the positive-negative

weight Wp = {w1
p, w

2
p, ..., w

n
p }. Wa balances the training samples of different activities and Wp

balances the positive and negative samples of a specific activity. With the aligned label sequence of
ith instance represented as Yi = {y1i , y2i , ..., yni } ∈ Rn. The calculation of wc

a is derived as:

ŵc
a =

1∑
i∈[I] y

c
i

(4)

wc
a = n× ŵc

a∑
c∈[n] ŵ

c
a

(5)

And the derivation of wc
p is:

wc
p =

∑
i∈[I] 1yc

i=0∑
i∈[I] y

c
i

(6)
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In which, [I] represents all input instances, and [n] represent all target activities. Compared with
vanilla BCE loss, we found wBCE loss can significantly improve the final performance on internal
validation set.

Furthermore, we tried multiple action recognition modules and made late fusion action-wisely
according to the results on the validation set. We found each classifier does show superiority on
certain actions. Through the feedback from the online leaderboard, such fusion strategy can improve
the final performance with noticeable margins.

3.6 Activity Deduplication

As the system generates overlapping proposals, it could have duplicate predictions for some of the
proposals. This would result in a large amount of false alarms unless we deduplicate them. Figure 3
is a diagram for our deduplication algorithm which applies to each activity type with all proposals:

1. Split the overlapping cubes of duration Dprop and stride Sprop into non-overlapping cubes
of duration Sprop . An output cube relies on all original cubes in the temporal window, with
an averaged score and an intersected bounding box.

2. Merge the non-overlapping cubes of duration Sprop back into ⌊Dprop

Sprop
⌋ groups of non-

overlapping cubes of duration Dprop . An output cube is merged from ⌊Dprop

Sprop
⌋ cubes with an

averaged score and the union of bounding boxes.

3. Select the group where the maximum score resides.

The deduplication algorithm performs an interpolation upon the overlapping cubes. Each group in
step 3 contains information from every classification results, maximizing the information utilization.

4 Experiments

4.1 Implementation Details

In the application of Argus++ [28] at TRECVID 2021 [1], we apply Mask R-CNN [8] with a ResNet-
101 [9] backbone from Detectron2 [24] pre-trained on the Microsoft COCO dataset [12] as the object
detector, with Sdet = 8. Only person, vehicle, and traffic light classes are selected. For the tracking
algorithm, we apply the work in [22] and reuse the region-of-interest from the ResNet backbone as in
[26, 15].

The proposals are generated with Dprop = 64 and Sprop = 16. The labels are assigned with
Thigh = 0.5 and Tlow = 0. The proposal filter is set with a tolerance of Ppos = 0.05.

For activity classifiers, we adopted multiple state-of-the-art models including R(2+1)D [20], X3D [6],
and Temporal Relocation Module (TRM) [16]. During training procedure, frames are cropped with
jittering [21] and enlarged with Renl = 0.13. For X3D and TRM, input frames are firstly resized
to 256×256 then randomly cropped to 224×224. Backbone networks are initialized with weights
pre-trained on Kinetics [10]. For R(2+1)D modules, input frames are firstly resized to 128×171
then randomly cropped to 112×112. The backbone is initialized with weights pre-trained on IG65M
[7]. During validation and testing procedure, for X3D and TRM, input frames are firstly resized to
256×256 then center cropped to 224×224. For R(2+1)D, input frames are firstly resized to 128×171
then randomly cropped to 112×112. For TRECVID 2021, we trained our system only on VIRAT
dataset.

4.2 Evaluation Protocols

To measure the performance, efficiency, and generalizability of Argus++, we evaluate it across a
series of public benchmarks. Argus++ is applied to NIST Activities in Extended Videos (ActEV)
evaluations on MEVA [4] Unknown Facility , MEVA Known Facility, . For TRECVID 2021, Argus++
is applied to VIRAT [14] settings for surveillance activity detection.

In the NIST evaluations, the metrics [2] are designed in a loosened setting, where short-duration
outputs are allowed and spatial alignment is ignored. The idea was that, after processed by the system,
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there will still be human reviewers to inspect the activity instances with the highest confidence scores
for further usages. The performance is thus measured by the probability of miss detection (Pmiss) of
activity instances within a time limit of all positive frames plus Tfa of negative frames, where Tfa is
referred to as time-based false alarm rate. The major metric, nAUDC@0.2Tfa , is an integration of
Pmiss on Tfa ∈ [0, 0.2].

For metrics in the following tables, ↓ means lower is better and ↑ means higher is better. For each
metric, the best value is bolded and the second best is underscored. For ongoing public evaluations,
the result snapshot at 11/01/2021 is presented.

4.3 NIST TRECVID 2021 ActEV

NIST TRECVID 2021 ActEV evaluations are where only results are submitted and test data is
accessible. However, following this procedure, the execution time of the whole system can’t be
measured. In real-world applications, real-time processing is almost a hard requirement. What’s more,
the reproducibility and robustness of submissions can’t be verified under current protocol. Thus, we
strongly suggest next year’s evaluation procedure can follow the steps of ActEV’21 Sequestered Data
Leaderboard.

For all our TRECVID submissions, we use the official splits of VIRAT for training and validation
and no extra data is used for training. For our best submission, we fused confidence scores from
different activity recognition models action-wisely. The performance of each system and the final
fusion submission are shown in Figure 4. Table 1shows the leaderboard upon our submission. As is
shown in the table, our system holds the first place with noticeable margins on both nAUDC@0.2Tfa

and Mean Pmiss@0.15Tfa metrics and ranks second on wPmiss@0.15Rfa metric.

Table 1: NIST TRECVID 2021 ActEV Evaluation [1]2

System/Team nAUDC@0.2Tfa ↓ Mean Pmiss@0.15Tfa ↓ Mean wPmiss@0.15Rfa ↓
Argus++ (Ours) 0.39607 0.30622 0.81080
BUPT 0.40853 0.32489 0.79798
UCF 0.43059 0.34080 0.86431
M4D 0.84658 0.79410 0.88521
TokyoTech_AIST 0.85159 0.81970 0.94897
Team UEC 0.96405 0.95035 0.95670

4.4 NIST ActEV’21 SDL Leaderboard

ActEV Sequestered Data Leaderboards (SDL) are platforms where a system is submitted to run on
NIST’s evaluation servers. This submission format prevents access to the test data and measures the
processing time with unified hardware platform3. For these evaluations, Argus++ was trained on
MEVA, a large-scale surveillance video dataset with activity annotations of 37 types. We used 1946
videos in its training release drop 11 as the training set and 257 videos in its KF1 release as validation
set. The optimization target is reaching better performance within 1x real-time.

Table 2 shows the published results from CVPR 2021 ActivityNet Challenge ActEV SDL Unknown
Facility evaluation, where Argus++ demonstrated around 20% advantage in nAUDC@0.2Tfa over
runner-up system.

The test set of unknown facility is captured with a different setting from MEVA, which challenges the
generalization of action detection models. Table 4 shows the ongoing NIST ActEV’21 SDL Known
Facility leaderboard, where Argus++ shows over 40% advantage in nAUDC@0.2Tfa .

The test set of known facility shares a similar distribution with MEVA, where our system learns
well and is getting nearer for real-world usages. Table 3 shows the ongoing NIST ActEV’21 SDL

2Snapshot: https://web.archive.org/web/20211115022601/https://actev.nist.gov/
trecvid21#tab_leaderboard

3https://actev.nist.gov/pub/Phase3_ActEV_2021_SDL_EvaluationPlan_20210803.pdf
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Table 2: CVPR 2021 ActivityNet Challenge4ActEV SDL Unknown Facility Evaluation
System/Team nAUDC@0.2Tfa ↓ MeanPmiss@0.02Tfa ↓ Relative Processing Time

Argus++ (Ours) 0.3535 0.5747 0.576
UMD_JHU 0.4232 0.6250 0.345
IBM-Purdue 0.4238 0.6286 0.530
UCF 0.4487 0.5858 0.615
Visym Labs 0.4906 0.6775 0.770
MINDS_JHU 0.6343 0.7791 0.898

Table 3: NIST ActEV’21 SDL Unknown Facility Evaluation
System/Team nAUDC@0.2Tfa ↓ MeanPmiss@0.02Tfa ↓ Relative Processing Time

Argus++ (Ours) 0.3330 0.5438 0.776
UCF 0.3518 0.5372 0.684
IBM-Purdue 0.3533 0.5531 0.575
Visym Labs 0.3762 0.5559 1.027
UMD 0.3898 0.5938 0.515
UMD-Columbia 0.4002 0.5975 0.520
UMCMU 0.4922 0.6861 0.614
Purdue 0.4942 0.7294 0.239
MINDS_JHU 0.6343 0.7791 0.898

Unknown Facility leaderboard continued from ActivityNet, where Argus++ still holds the leading
position with over 5% advantage in nAUDC@0.2Tfa .

4.5 Ablation Study

Coverage of Proposal Formats We analyze the coverage of dense spatio-temporal proposals and
determines the best hyper-parameters for the proposal format. By directly use ground truth cubes
as proposals, we estimate the upper bound performance of both overlapping and non-overlapping
proposal formats on VIRAT validation set. The results are shown in Table 6, where non-overlapping
proposals shows at least 6.7% systematic errors while overlapping proposals with duration 64 and
stride 16 only has 1.3%.

Performance of Proposal Filtering We examine the quality of the proposals with and without the
filter, as shown in Table 7 and 5. With the proposal evaluation procedure introduced in Section 3.4,
the proposals are further filtered by IoU with reference and coverage of reference at levels from 0,
0.1, to 0.9 to calculate partial results.

Table 4: NIST ActEV’21 SDL5Known Facility Evaluation
System/Team nAUDC@0.2Tfa ↓ MeanPmiss@0.02Tfa ↓ Relative Processing Time

Argus++ (Ours) 0.1635 0.3424 0.413
UCF 0.2325 0.3793 0.751
UMD 0.2628 0.4544 0.380
IBM-Purdue 0.2817 0.4942 0.631
Visym Labs 0.2835 0.4620 0.721
UMD-Columbia 0.3055 0.4716 0.516
UMCMU 0.3236 0.5297 0.464
Purdue 0.3327 0.5853 0.131
MINDS_JHU 0.4834 0.6649 0.967
BUPT-MCPRL 0.7985 0.9281 0.123
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Figure 4: Action-wise nAUDC@0.2tfa of our systems. Our best submission (26562) is an action-wise
fusion system (shown as the pink curve) and ranks first on the ActEV TRECVID21 Leaderboard.

Table 5: Proposal Quality Metrics on VIRAT Validation Set
nAUDC@0.2Tfa IoU Reference Coverage
Threshold Average ≥ 0 ≥ 0.5 Average ≥ 0.5 ≥ 0.9

Unfiltered Proposals 0.2358 0.0772 0.1518 0.1562 0.1125 0.4211
Filtered Proposals 0.2352 0.0772 0.1469 0.1563 0.1099 0.4280

Table 6: Lower Bounds of nAUDC@0.2Tfa on VIRAT Validation Set with different proposal formats.
Italic values are non-overlapping proposals while the others are overlapping proposals. Duration and
stride are in the unit of frames.

Duration / Stride 16 32 64 96

32 0.0705 0.1208 - -
64 0.0127 0.0621 0.0673 -
96 0.0275 0.0504 - 0.0688

With the dense cube proposals, the best nAUDC@0.2Tfa we can achieve with a ideal classifier is
0.08, as indicated in the IoU ≥ 0 column. The IoU and reference coverage bounded scores are used to
measure the spatial matching quality of proposals, as the nAUDC@0.2Tfa does not consider spatial
alignments. We can see that even with a condition of IoU ≥ 0.5, our proposal can achieve up to 0.15,
which indicates the spatial preciseness. The proposal filter is also proved effective, which removed
70% of original proposals without dropping the recall level.

The effect of the proposal filter is also evaluate on the SDL, as shown in Table 8. It not only reduces
processing time from 0.925 to 0.582, but also improves nAUDC@0.2Tfa due to reduced false alarms.
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Table 7: Statistics of Proposals on VIRAT Validation Set

Name Unfiltered Filtered

Number of Proposals 211271 62831
Positive rate 0.1704 0.5204
Rate of unique label 0.4558 0.4415
Rate of two labels 0.4127 0.4252
Rate of three labels 0.1017 0.1060

Table 8: Proposal Filter on NIST ActEV’21 SDL Unknown Facility Micro Set

Proposal Filter nAUDC@0.2Tfa ↓ Processing Time

Enabled 0.4822 0.582
Disabled 0.5176 0.925

5 Conclusion

In this work, we introduced a latest application of the CMU Argus++ [28] video understanding
framework that achieved and kept state-of-the-art performance for years. In the system, we generated
and processed a novel overlapping spatio-temporal cube proposal instead of tubelete proposal used
by previous works. By over-sampling, we generated cube proposal while ensured the coverage and
completeness of activities. Then, we applied a proposal filtering to select the most important candidate
proposals. After that, we applied activity recognition and activity deduplication to classify the target
activities in the proposals. The proposed system is able to process streaming videos in real-time for
varies scenarios in large field-of-views and achieved the best performance on the TRECVID 2021
challenge up to now.

There are already impressive works extended from this system to other area, including UAV video
and road video analysis and archived the outperformed results. Future works could be done on
widely real-world applications, such as first-person human view activity understanding, vision based
self-driving, etc.
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