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Abstract—This paper presents our method developed for Ad-
hoc Video Search (AVS) task in TRECVID 2021. Our method
is built using Conceptual Captions dataset [1], MS COCO
dataset [2], MSR-VTT dataset [3] and TGIF dataset [4] (models
pre-trained on a dataset of 940 million social media images with
1500 noisy hashtags [5], ImageNet dataset [6], Wall Street Journal
part of Penn Treebank (PTB) dataset [7] and Visual Genome [17]
are internally used). Our method performs retrieval by fusing
three component models, VSE++ that uses image features to
match a shot with a topic [8], dual encoder that uses image and
video features for shot-topic matching [9], and Stacked Cross
Attention Network (SCAN) that uses image features of regions
in a shot [10]. Specially, our five submitted runs are characterised
by the following combinations of component models:

1) F M C D kindai ogu osaka.21 1: VSE++, dual encoder,
and SCAN that matches regions in a shot with words and
phrases in a topic by extracting the constituency tree of
the topic.

2) F M C D kindai ogu osaka.21 2: VSE++, dual encoder,
and SCAN that carries out a slightly different matching of
regions with words and phrases.

3) F M C D kindai ogu osaka.21 3: VSE++, dual encoder
and SCAN that matches regions only with words (our
baseline).

4) F M C D kindai ogu osaka.21 4: The same combination
to F M C D kindai ogu osaka.21 2 except that the fusion
is based on normalised scores from the component models.

5) F M N D kindai ogu osaka.21 5: SCAN that matches
regions with words and phrases to find unique shots.

The evaluation results show that the MAPs of F M C D
kindai ogu osaka.21 1 at the main and progressive tasks are
0.213 and 0.271 respectively, while the corresponding MAPs
of F M C D kindai ogu osaka.21 3 are 0.190 and 0.264. This
validates the effectiveness of fine-grained matching of regions
with words and phrases based on the linguistic structure of
a topic. Finally, F M C D kindai ogu osaka.21 1 achieved the
top AP for topic 666 “a man wearing a blue jacket”, which
suggests that fine-grained matching could be especially useful
for topics involving nouns with modifiers. This will be further
explored in our future work.

I. INTRODUCTION

We are continuously participating in TRECVID for objec-
tive performance comparison between our system and systems
developed all over the world [11]. This year we participated in
Ad-hoc Video Search (AVS) [12] to examine the effectiveness
of fine-grained matching between visual features of a shot
and textural features of a topic by considering the linguistic

structure of the topic. This is inspired by our past experiences
to apply Stacked Cross Attention Network (SCAN) [10] to
AVS task in TRECVID 2019 and 2020 [13], [14]. Roughly
speaking, SCAN was used to compute the relevance of a shot
to a topic by matching regions in the shot with words in the
topic. However, this matching does not fit human’s perception
because he/she checks not only whether regions corresponding
to words exist in the shot, but also whether those regions suit
to phrases involving multiple words. In addition, the lack of
considering phrases causes to retrieve several false positive
shots where words in one phrase are matched with different
regions. Taking “red dress” as an example, such a false positive
shot includes the region of a dress and the region of a red
object (e.g., red ball, red light, fire, bricks etc.). To realise
shot-topic matching akin to human perception and reduce
false positive shots, we extend SCAN to SCAN tree that can
perform fine-grained matching between regions in a shot and
words/phrases in a topic by extracting the constituency tree of
the topic.

II. OUR AVS METHOD

Our AVS method consists of three component models,
VSE++ [8], dual encoder [9] and SCAN tree. This section
presents these component models by putting a special focus on
SCAN tree. Different combinations of component models to
define the submitted runs will be described in the next section.

A. VSE++

VSE++ is a simple but effective visual-semantic embedding
model that maps visual and textual features into a common
space, so that the relevance of each shot to a topic can
be computed [8]. VSE++ consists of an image encoder that
extracts a visual feature from an image, a text encoder that
extracts a textual feature from a caption, and Fully-Connected
(FC) layers that map the visual and textual features into a
common space. A pre-trained model is usually used as the
image encoder. In particular, VSE++ in our method utilises
ResNeXt-101 WSL (32x48d) [5] that is pre-trained in weakly-
supervised fashion on 940M social media images with 1.5K
noisy hashtags and fine-tuned using ImageNet dataset [6]. The
text encoder is implemented using a network consisting of a
word embedding layer followed by a layer of Gated Recurrent



Unit (GRU). Given a training dataset, the text encoder and FC
layers are optimised so that the visual feature of an image and
the textual feature of the corresponding caption are projected
close to each other in the common space. In addition, the
optimisation aims the projection where the projected feature
of an image (or a caption) is distant from the projected features
of irrelevant captions (or images).

VSE++ in our method is trained on the dataset created by
combining 3M image-caption pairs in Conceptual Captions
(CC) dataset [1] and 0.6M pairs in MS COCO dataset [2].
For encoding visual features in a shot, the image encoder is
applied to 10 equidistantly-sampled frames together with the
keyframe, because analysing multiple frames in a shot usually
leads to a performance improvement [14]. Average-pooling is
then employed to aggregate features extracted from these 11
frames into a single vector, which is subsequently projected
into the common space by the trained VSE++. Also, a topic
is encoded into a textual feature that is then projected into
the common space. Finally, the cosine similarity between the
aggregated visual feature of the shot and the textual feature of
the topic in the common space is used as the relevance of the
shot to the topic. Please refer to our notebook papers in 2019
and 2020 for more details about VSE++ [13], [14].

B. Dual Encoder

Dual encoder is a visual-semantic embedding model that
performs the following three-level encodings for both a shot
and a topic [9]: The first-level extracts an overall feature,
specifically, the average of visual features extracted from
frames that are sampled every 0.5 seconds from a shot, and
the average of one-hot vectors representing each word in a
topic. The second-level encoding extracts a feature reflecting
sequential relations. A sequence of visual features extracted
above is fed into a bi-directional GRU, and the average of
hidden states computed for these features is regarded as the
feature obtained by the second-level encoding. Similarly, the
aforementioned one-hot vectors are fed into a word embedding
to obtain a sequence of textual features, and then a bi-
directional GRU is employed to obtain the average of hidden
states. The third-level encoding extracts a feature representing
short-term sequential relations. For both shot and topic sides,
convolutions characterised by different kernel sizes are applied
to the sequence of hidden states obtained at the second-
level encoding. Afterwards, max-pooling is used to summarise
features obtained by the convolution with one kernel size into
a single vector, and the concatenation of vectors from all
kernel sizes is treated as the output of the third-level encoding.
Finally, the concatenation of features from all levels in the shot
side and the one in the topic side are projected into a common
space.

Dual encoder in our method is trained using MSR-VTT
dataset [3] and TGIF dataset [4]. Differently from the original
implementation [9], we extracted visual features of a frame
as the concatenation of features obtained using two pre-
trained models, ResNeXt-101 WSL (32x48d) [5] and vision
transformer pre-trained on ImageNet dataset [15].

C. SCAN tree

SCAN tree consists of two main processes, the extraction of
a constituency tree for each topic and the matching of regions
with words and phrases represented by the constituency tree.
The parser developed in [7] is used for our constituency tree
extraction. Roughly speaking, the parser starts with an empty
tree and sequentially adds each word to the tree by performing
the action to attach the word as a child node of an existing node
or the action to juxtapose the word as a sibling to an existing
node by creating a shared parent node. A neural network to
conduct this action selection is trained on Wall Street Journal
part of Penn Treebank (PTB) dataset [7]. Fig. 1 shows an
example of constituency tree extracted for topic 668 “a person
wearing an apron indoors”. As shown in this figure, nodes in
the tree is labelled with constituent tags like DT (Determiner),
NN (Noun), NP (Noun Phrase) and so on.

Fig. 1. An examle of constituency tree extracted for topic 668 “a person
wearing an apron indoors”.

Let us consider to match regions in an image with words and
phrases contained in the constituency tree of a caption. To this
end, regions are encoded into features in the following way:
First, the image is analysed to extract 36 salient regions each
of which is likely to include a concept with an attribute, such
as “blue water”, “black hair” or “floral dress”. Such salient
regions are extracted using a bottom-up attention model [16]
that is implemented with Faster R-CNN based on ResNet101
backbone and trained on Visual Genome dataset [17]. Then,
each region is represented by a 2048-dimensional feature
that is the output of the intermediate layer (pool5 falt) of
the bottom-up attention model, and transformed into a 1024-
dimensional feature via an FC layer.

Words and phrases are encoded using a Tree-LSTM that is
an extended LSTM to propagate hidden states and memory
cells based on the topology of a tree [18]. In particular,
a Child-Sum Tree-LSTM is used to perform the following
bottom-up propagation: Given a constituency tree for a cap-
tion, words corresponding to leaf nodes are firstly encoded



into 300-dimensional vectors via a word embedding layer.
These vectors are then used to compute 1024-dimensional
hidden states and memory cells for leaf nodes. The process
for each internal node starts with defining the “overall” hidden
state from its child nodes as the sum of their hidden states.
The overall hidden state is used to compute values of the
input, output and forget gates. Here, a forget gate value is
separately calculated for each child node to signify whether
it is strongly related to the node or not. Afterwords, a hidden
state and a memory cell for the node are obtained using the
gate values. This way, hidden states and memory cells are
propagated from leaf nodes to the root node corresponding to
the whole of the caption. Note that no external input like word
embedding features exist for internal nodes. In other words,
the propagation for each internal node is based only on hidden
states from its child nodes. The hidden state of each node is
regarded as the feature of the corresponding word or phrase.

For simplicity, words and phrases are collectively called
“tokens” as long as there is no need to distinguish between
them. Regions and tokens are matched using the attention
mechanism of the original SCAN [10]. Roughly speaking,
an attention between a region and a token is computed as
their normalised similarity lying between 0 and 1. That is,
the attention represents a probabilistic relevance of matching
the region with the token. Then, the “token-level” relevance
of how suitable regions in the image are for the token,
is computed as the cosine similarity between the token’s
feature and the average of regions’ features weighted by their
attentions to the token. Finally, the “caption-level” relevance of
the image is measured as the average of token-level relevances
over all tokens. In this framework, the FC layer in the region
encoder, and the word embedding layer and the Tree-LSTM in
the token encoder are optimised so that the caption-level rele-
vances are high and low for relevant image-caption pairs and
irrelevant ones, respectively. This optimisation consequently
leads to semantically meaningful matching between regions
and tokens. For more details, please refer to the original SCAN
paper [10] and our notebook paper in 2019 [13].

Since all tokens in a caption are not necessary for examining
the relevance of an image, the following four variants of
SCAN tree are devised by changing types of tokens to be
matched with regions. The first variant considers the set of
21 token types including NN (Noun), NP (Noun Phrase), VB
(Verb), VP (Verb Phrase), JJ (Adjective), ADJP (Adjective
Phrase), RBR (Adverb), ADVP (Adverb Phrase), CD (Cardinal
number) and so on. The second variant reduces this set to the
one of 13 token types that are related to nouns and verbs. The
third variant uses the further reduced set of 6 types related
only to nouns. The last variant is the original SCAN that
takes no consideration of phrases and uses all the words in
a caption. Although token selection is theoretically crucial for
accurate retrieval, our preliminary experiments showed that
the performances of all the four variants are similar. But, one
notable thing is that different shots are retrieved by different
variants. Considering this diversity in retrieved shots, the final
retrieval result of SCAN tree is acquired by late fusion where

the final relevance of each shot to a topic is computed as
the average of caption-level relevances obtained by the four
variants. Our preliminary experiments validated that late fusion
significantly boosts the retrieval performance.

III. RESULTS

Our submitted five runs are configured by combining
VSE++, dual encoder and SCAN tree as follows:

1) F M C D kindai ogu osaka.21 1: The overall rele-
vance of a test shot to a topic is computed just by
summing their similarity in the common space obtained
with VSE++, their similarity in the common space with
dual encoder, and the relevance with SCAN tree.

2) F M C D kindai ogu osaka.21 2: The only difference
from the first run is in SCAN tree’s Tree-LSTM. While
the first run uses word embedding features for leaf
nodes, this run attempts to sophisticate each of these
features by considering its surrounding features based
on a bi-direction GRU. That is, the hidden state obtained
for each word is used as the external input of the
corresponding leaf node in the Tree-LSTM.

3) F M C D kindai ogu osaka.21 3: The overall rele-
vance of a test shot to a topic is computed by summing
their similarity in the common space with VSE++, their
similarity in the common space with dual encoder, and
the relevance computed with the original SCAN. That
is, this is our baseline run to examine the effectiveness
of considering phrases in the topic by SCAN tree.

4) F M C D kindai ogu osaka.21 4: This run is the
same to the second run except that the similarity between
a test shot and a topic by VSE++, the one by dual
encoder, and the relevance by SCAN tree are linearly
normalised to have the minimum 0 and the maximum 1
before they are summed up.

5) F M N D kindai ogu osaka.21 5: We believe that few
teams carries out fine-grained matching between regions
and token, so this novelty run only uses SCAN tree to
find unique shots that are not found by other teams.

Fig. 2 shows the ranking list of the runs submitted
to the main AVS task. As depicted by the five red-
coloured bars at the right, our submitted runs are
unfortunately ranked at the bottom. However, the MAPs
of F M C D kindai ogu osaka.21 1 (0.213), F M C
D kindai ogu osaka.21 2 (0.193) and F M C D kindai
ogu osaka.21 4 (0.199) are higher than the MAP of the
baseline F M C D kindai ogu osaka.21 3 (0.190). This
validates the effectiveness of SCAN tree that considers
phrases in a topic together with words.

Fig. 3 displays the ranking list of the runs submitted to the
progress task. This figure presents a different trend from Fig. 2.
Specifically, in Fig. 3, our submitted runs are not ranked at
the bottom compared to the runs that are submitted in 2021.
In particular, F M C D kindai ogu osaka.21 1 whose MAP
is 0.271 is ranked at about the middle among those runs.
This suggests that the performance of our method significantly
depends on topics, and the analysis of such a dependence is



Fig. 2. Ranking list of the runs submitted to for the main AVS task.

one of our future work. In addition, the comparison among
the yellow-, green- and red-coloured bars that respectively
correspond to our submitted runs in 2019, 2020 and 2021,
clearly shows the performance improvements that we have
achieved in the three years.

Finally, Fig. 4 exhibits the comparison of region-token
matching between SCAN tree (especially the second variant
considering tokens related to nouns and verbs) and the original
SCAN for topic 616 “A woman wearing a red dress outside
in the daytime”. In this figure, each rectangle drawn on
the frame presents the most attentive region for each token.
Fig. 4 (b) shows inconsistent region-word matching where
the most attentive region for “woman” is different from such
regions for “red” and “dress”, although this woman is wearing
the red dress. Compared to this, Fig. 4 (a) demonstrates
that SCAN tree can select suitable tokens for examining the
relevance of the frame and put attention on semantically
appropriate regions.

IV. CONCLUSION AND FUTURE WORK

This paper introduced our method developed for TRECVID
2021 AVS task. It combines three component models, VSE++,
dual encoder and SCAN tree. Especially, SCAN tree is de-
vised by extending SCAN to perform matching between
regions in a frame and words and phrases in a topic by
extracting the constituency tree of the topic. The evaluation
results validates the effectiveness of SCAN tree. Our future
work to further improve SCAN tree includes the adoption of
a more advanced bottom-up attention model to extract a better
feature of a region, the replacement of a Tree-LSTM with a
transformer, and the consideration of relations among regions
to restrict region-token matching.
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