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Abstract—The Multimedia and computer Vision Lab of the
University of Augsburg participated in the VTT task only. We
use the VATEX [1] and TRECVID-VTT [2] datasets for training
our VTT models. We base our model on the Transformer [3]
approach for both of our submitted runs, i.e., for run 2021-
01 . For our second model (2021-02), we adapt the X-Linear
Attention Networks for Image Captioning [4] which does not
yield the desired bump in scores. For both models, we train
on the complete VATEX dataset and 90% of the TRECVID-
VTT dataset for pretraining while using the remaining 10% for
validation.
We finetune both models with self-critical sequence training [5],
which boosts the validation performance significantly. Overall,
we find that training a Video-to-Text system on traditional
Image Captioning pipelines [6] delivers very poor performance.
When switching to a Transformer-based architecture our results
greatly improve and the generated captions match better with
the corresponding video (see Figure 3).

I. INTRODUCTION

In this notebook paper, we present our Video-to-Text model,
which allows to create descriptions for arbitrary videos. Our
model is inspired by the classical Transformer [3] approach.

II. MODEL

A. Preprocessing of Videos

Single Images. In order to process the videos in our model,
we first need to extract single frames. We use ffmpeg for
extracting every frame of each video of the respective dataset.
We use ResNet-101 [7] to compute features for the extracted
frames. More specifically, we resize the input images to
224×224 and use the average pooled features with dimension
R2048.

I3D Features. We additionally extract features with the
Inflated 3D ConvNet (I3D) [8] similar to frame-level features.

Instead of forwarding frame images through the ResNet-
101 V2 network, we extract video clip features with the
RGB-I3D pretrained on the Kinetics Human Action Video
dataset [9].

Audio features. We take the audio of the video, resample it
to 16 kHz and extract features with the VGGish [10] network.
If no audio stream for a video is existent, we create a dummy
feature vector with all zeros.

B. Preprocessing of Tokens

In contrast to our 2020 submission, we do not employ a
default tokenizer, but we use the WordPiece Tokenizer [11] to
generate the tokens. We load pretrained embedding weights1

from the BERTSMALL model.

C. Model

An overview of our model architecture is depicted in
Figure 1. In comparison with the original Transformer [3]
architecture, we changed the encoder part to accept image
features instead of embedded words. That is, we exchanged
the sentence encoder with a video encoder. More specifically,
we replaced the input embedding with an image embedding,
which is standard practice in common image captioning
models [6]. An image embedding layer embeds the image
features into the desired embedding space. In our model, we
use ResNet-101 features ∈ R2048 and embed them into the
encoder space with dimension dmodel = 512. Additionally,
we concatenate audio features extracted by the VGGish [10]
network. We use a seperate embedding layer for the audio
features.

1https://tfhub.dev/google/small bert/bert uncased L-8 H-512 A-8/1

https://tfhub.dev/google/small_bert/bert_uncased_L-8_H-512_A-8/1
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Fig. 1: Our model architecture was slightly modified from the
original Transformer [3] to allow vision and audio frames as
input to the encoder blocks. Model image inspired by [3] and
modified to match our architecture.

We also use positional encoding to encode the order of every
single frames in the video. As the Transformer architecture
does not care about the order of the input, i.e., every frame
can influence every other frame in the same way, we need to
explicitly tell the encoder the frame number. Similar to the
original paper, we use a positional encoding to encode the
frame number, which we add on top of the embedded image
features. The sequence length of image features or I3D features
is varying. Therefore, we cannot simply concatenate vision and
audio features as the added positional encoding may signal the
encoder that it receives a vision feature as input when in reality
it is an audio feature. We assume a fixed starting position for

Dataset # Videos (clips) # Sentences # Videos avail. # Sentences usable

VATEX [1] 41,269 349,910 38,109 323,950
MSR-VTT [14] 10,000 200,000 7773 155,460
TRECVID-VTT [15] 7485 28,183 5971 22,547
AC-GIF [13] 163,183 164,378 163,183 164,378

TABLE I: Different datasets and their respective number
of video clips and number of available videos. Sentences
are available for every video, however, not every video was
available to be downloaded from YouTube.

all audio features which we set to 300 (i.e., there are no more
than 300 image frames for any video in the dataset). Finally,
we add positional encodings for indexes [300, 301, . . . ] on top
of the embedded audio features.
In the encoder, we make use of the memory-augmented
encoding [12], which encodes multi-level visual relationships
with a priori knowledge. In the original work, Cornia et al. use
a persistent, learnable memory vector which is concatenated
to the key and value of the self-attention blocks of the
Transformer. These memory vectors allow to encode persistent
a-priori knowledge about relationships between image regions.
In contrast to the original work, we work with video sequences
instead of still images with regions. Adapted to our archi-
tecture, the memory vector encodes a-priori knowledge about
relationships between frames in a given video. We did not
change the architecture of the decoder block (see Section III).

III. DATASOURCES

We use two datasets for training our models, which are
described below. Additionally, we show some dataset statistics
in Table I. Note that we also trained on AC-GIF [13] and
MSR-VTT [14] in last year’s challenge. However, we found
that VATEX delivers far better and more consistent results.

A. TRECVID-VTT

We use the official TRECVID-VTT dataset [15] which
contains videos from the TRECVID VTT from 2016-2019. We
only use the Twitter Vine subset of videos. In total, this subset
contains 6, 475 videos from which we use 5, 971 available
videos with 22, 547 captions. In all our experiments we train
on 90% and validate the model on 10% of the videos.

B. VATEX

We additionally train on the VATEX Dataset [1] to boost
the performance of our final models. We trained our last-
year models on MSR-VTT [14], but found that the MSR-
VTT dataset is less representative than the VATEX dataset
and results in lower scores. The VATEX dataset is split into 4
sets, i.e., the training set, the validation set, the public test set
and the private test set. The VATEX dataset comes with 10
English and 10 Chinese captions per video clip. Most video
clips have a length of 10 s.

IV. MODEL CONFIGURATIONS

We submitted two models for the Video-to-Text (VTT) task.
Both of our models are pretrained on a merged dataset and
then finetuned on the merged dataset as well.



TABLE II: Submitted models (in bold) and their respective validation scores. We validated all of our models after every epoch
on 10% of the TRECVID-VTT dataset to select a model to submit. We also include our models from last year (2020-01-ft
and 2020-02-ft) for comparison.

Model epochs ft Features |mv| Vocabulary lr Schedule B-4 C M

2020-01-ft 25 ✓ CNN 64 Default Default 0.076 0.176 0.116
2020-02-ft 1 ✓ CNN 64 Default Default 0.061 0.151 0.110

2021-01 43 — I3D 64 WP-BERT sgdr 0.101 0.249 0.249
2021-01-ft 3 ✓ I3D 64 WP-BERT 5 · 10−6 0.142 0.308 0.160
2021-02 15 — I3D 64 WP-BERT sgdr 0.109 0.226 0.137
2021-02-ft 0.33 ✓ I3D 64 WP-BERT 5 · 10−6 0.115 0.244 0.142

For our primary model (cf. 2021-01), we first train a base
model on the full MSR-VTT dataset and 90% of the VATEX
dataset. We select the model by employing an early-stopping
strategy on the CIDEr score of the remaining 10% of the
TRECVID-VTT dataset. In contrast to last year’s primary
model (2020-01), we train on I3D features instead of ResNet
features. Furthermore, we add audio features for the VATEX
part of our training set (the TRECVID dataset does not come
with audio) and train the model with a modified learning
rate schedule. For finetuning, we use the base model and
train it on the same dataset, but enable self-critical sequence
learning [5] with a constant learning rate η = 5·10−6. Here, we
calculate the CIDEr scores for a baseline caption ŵ and sample
5 additional captions ws, respectively. Subsequently, we can
baseline the reward of the sampled captions by subtracting
the CIDEr score for the baseline caption. As a consequence,
sampled captions with a higher CIDEr score than the baseline
caption get a positive reward and vice versa. The gradient of
the loss function can be approximated as follows:

∇θL(θ) ≈ −(r(ws)− r(ŵ))∇θ logpθ
(ws). (1)

Each word will be weighted according to its log probability
and r(·) is the reward function. θ are the parameters of
the network and define a policy pθ. For our final models,
we additionally optimize the BLEU-4 metric. Therefore, our
reward function becomes

r(·) = λCIDEr · rCIDEr(·) + λBLEU-4 · rBLEU-4(·), (2)

where λ· is a weight for the corresponding metric.
Our second model (cf. 2021-02) is trained similarly, except we
implemented X-Linear Attention [4]. We fine-tune this model
in the same way as model 2021-01. In Table III, we present
the number of training samples used for training the base and
finetuned models.
Our models use 8 encoder and 8 decoder blocks. We use 8
attention heads and a model dimension of dmodel = 512. For
the position-wise feed-forward networks, we set dff = 2048
as the inner-layer dimensionality. We use a memory-vector
size of dmemory = 64. The primary model use the default BERT
subtoken vocabulary with 30522 subword tokens. It does not
use complete words for the vocabulary, but tries to build words
from subwords, i.e., it splits words into subwords if a word is
not in the initial dictionary.

TABLE III: Data source used for training our models. We
also depict the total number of training and validation samples
used.

Model: Data sources # train samples # val samples

1: MSR-VTT + 90% VATEX 273,314 3602

V. TRAINING

We train our models in a multi GPU setting, i.e., we train
the model on 4 NVIDIA Tesla A100 GPUs simultaneously.
We use a batch size of 128 per GPU, resulting in an effective
batch size of 512. We use the Adam [16] optimizer with
β1 = 0.9, β2 = 0.98 and ϵ = 10−9. Similar to [3], we
train with a variable learning rate η over the course of the
training (schedule-default). However, we combine the original
learning rate with SGDR (Stochastic Gradient Descent with
Warm Restarts, schedule-sgdr) [17] learning rate schedule. We
plot the SGDR learning rate schedule combined with a warm-
up phase in Figure 2. In contrast to the original Transformer
architecture, we used w = 10, 000 for the number of warm-up
steps.

For the base model of our primary model (2021-01), we
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Fig. 2: The blue line shows the default learning rate schedule
for a Transformer with 10,000 warm-up steps. The orange line
shows our learning rate schedule, a combination of SGDR [17]
and the warm-up phase.

observed the best validation performance on TRECVID-VTT
after 43 epochs with a CIDEr score of 0.249. We used this
model to finetune with self-critical sequence learning (2021-
01-ft). In doing so, we significantly improved the scores as



can be seen in Table II. For our second model (2021-02),
we chose the same approach but trained the base model with
a transformer that employs X-Linear Attention [4]. The best
scores were also observed after 15 epochs and are in the same
range as our primary model. However, when finetuning the
second model with self-critical sequence learning, the scores
did improve in contrast to the base model, but our primary
model performs better. We submitted results generated by
our models 2021-01-ft and 2021-02-ft, because we selected
it based on the CIDEr scores and the generated captions on
the validation set looked quite promising.

VI. RESULTS

TABLE IV: Submitted models and their respective perfor-
mance on the unseen test dataset. Models with (1977) denote
performance on the extended unreleased test set from 2021.
The other models are comparable to last year’s results (seen
in the first two rows).

Model BLEU CIDEr CIDEr-D METEOR

2020-01-ft 0.018 0.140 0.064 0.202
2020-02-ft 0.011 0.136 0.060 0.204

2021-01-ft 0.022 0.315 0.180 0.292
2021-02-ft 0.015 0.247 0.137 0.260
2021-01-ft (1977) 0.022 0.313 0.178 0.292
2021-02-ft (1977) 0.015 0.246 0.137 0.260

For the TRECVID 2020 workshop [18], we submitted
captions generated on the provided test videos (1, 700) for
basic transformer models (see last year’s notebook paper
for details [19]). In a nutshell, we implemented a vanilla
Transformer that accepts only image features from a ResNet
with support for memory-augmented vectors [12].
For this year’s workshop [15], we extended our model to
support audio frames, features from the Inflated 3D ConvNet
(I3D) [8] and self-critical sequence training. We submitted
captions generated by our two finetunes models (2021-01-ft
and 2021-02-ft).
These captions were evaluated by the workshops organizers.
Compared to our validation set scores, the evaluation on the
test set yields worse results as can be been in Table IV.
Especially, the BLEU score is much lower on the test data
than on the evaluation data.
We depict five videos and their generated caption in Figure 3.
We see that for the first three videos our generated captions
from the model 2021-01-ft match the video content quite good.
The first video description is correct. Only if we look closer,
we see that one person is giving the other person a massage.
In the second video, our model detects correctly that we see a
football field and a group of people which are indeed playing
footbal. In the third video, our model detects a young woman
who looks into a camera. However, it fails to detect that the
woman is cheering in back of some apples. For the fourth
video the model correctly detects a man. But the man is not
reading a book, rather he is showing an ad in front of his

notebook. In the fifth video, the model detects that there is
basketball game going on. However, it shows the audience
rather than basketball players sitting on a bench. But in the
first frame, we see a basketball play, hence, the model may
take this as a hint for generating the sentence.

VII. CONCLUSION

In this notebook paper, we presented our VTT model based
on a Tansformer [3] architecture. By extracting features for ev-
ery frame of the videos, we were able to adapt the Transformer
architecture to use videos in the encoder block. Furthermore,
we extracted features with the I3D network that is may extract
contextual information related to the time-axis of the video.
In addition, we modified the Multi-Head Attention of the
encoder to use memory vectors similar to [12] which allow
to memorize a priori knowledge about relationships between
video frames. Finally, we finetune our models with self-
critical sequence learning that directly optimizes the CIDEr
and BLEU-4 metrics. Thus, we generate captions that describe
video contents (see Figure 3). However, as not all objects
and circumstances of the videos are detected and described
correctly, we want to address object and relationship detection
in future work.
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2021-01-ft: young asian boy is holding another boy in front of him and smiles at the camera .
2021-02-ft: a young asian woman is crying in front of a camera in a room

2021-01-ft: a group of people are playing football on a field .
2021-02-ft: a football player is running on a football field and kicks a field goal . and

2021-01-ft: a young asian woman talking to the camera .
2021-02-ft: a young asian woman is talking to the camera in a room

2021-01-ft: a man is sitting at a table and reading a book in a room .
2021-02-ft: a young man is using a knife to open a box . and

2021-01-ft: a group of basketball players are sitting on a bench at a game .
2021-02-ft: a group of soccer players are sitting in a basketball court and in front of a man

Fig. 3: Five videos from the validation dataset and the corresponding captions generated by our models.
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