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Abstract

In this report, we present our solutions for the Video to Text Description (VTT) task
in TRECVID 2021 [1], which includes two sub-tasks, Description Generation and
Fill-in-the-Blanks. For the Description Generation sub-task, we employ a Concept
Enhanced Pretraining-based Transformer Model (CE-PTM), which is trained via
the Video-guided Masked Language Modeling (VMLM) objective. Experimental
results show that with the proposed pre-training method, the transformer model
outperforms LSTM-based models for short video description generation. For the
Fill-in-the-Blanks sub-task, we automatically build the training and validation
set by randomly blanking nouns and verb phrases of the video captions. We
further propose 4 generation approaches based on the same pre-trained PTM to
generate phrases to fill in the blank. Our team RUC_AIM3 finally ranks 1st place
in Description Generation sub-task on METEOR, CIDEr, SPICE, and STS metrics,
and the 1st place in Fill-in-the-Blanks sub-task by Human Evaluation in TRECVID
2021.

1 Description Generation

1.1 Approach

The description generation subtask aims to generate a natural language sentence to describe the content
given a short video [2]. Previous works suggest that the two-layer LSTM model is more feasible
than the vanilla transformer framework for generating short-video descriptions [2, 3]. However,
pre-training based transformer models, such as VideoBERT [4], UniVL [5], Oscar [6] and CLIP
[7] have achieved great success in various vision-language tasks in recent years. Therefore, we
wonder whether the pre-training based transformer model is also suitable for short video captioning?
To answer this question, we design a Concept Enhanced Pretraining-based Transformer Model
(CE-PTM) trained with the Video-guided Masked Language Modeling (VMLM) task. As shown
in Figure 1, CE-PTM consists of four parts: Video Encoder, Text Encoder, Concept Encoder, and
Multimodal Transformer.

Video Encoder is employed to encode raw video frames into visual representations. It consists of
three parts: an off-the-shelf feature extractor, linear projection layer, and a transformer encoder layer.
Considering the huge amounts of spatio-temporal information contained in a video, training the
model in an end-to-end manner can consume a lot of computing resources. Therefore, we sample
key-frames from videos and extract video features with off-the-shelf networks. We sample one
key frame every 8 frames. In order to comprehensively encode videos, we extract five types of
video features with different backbone networks, including I3D [8], ResNeXt-101 [9], irCSN [10],
Swin-Transformers [11], and CLIP ViT-B/32 [7]. The comparisons between these features are shown
in Table 1. For each sampled frame, we concatenate the extracted five feature vectors and finally get
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Figure 1: Architecture of CE-PTM.

a 7168-dimensional2 video feature per key-frame. Therefore, the video is represented as a sequence
of V f = {vf1 , . . . , v

f
Lv

} ∈ RLv×7168, where Lv denotes the number of key frames of the video. A
linear layer is then employed to project the video features into 512-dimensional embedding vectors.
To distinguish different modalities, we further add type embedding to each visual appearance feature.
Then, we encode the video embeddings into visual representations V r with a one-layer transformer
encoder. Note that we do not add the positional embedding since our video embeddings already
contain 3D features with temporal information 3. Formally, the visual representations are calculated
as follows:

V e = V fWT
e (1)

V r = TransformerEncoderLayer(V e +TE(0), θv) (2)

where TE(·) represents Type Embedding layer and θv represents parameters of the TransformerEn-
coderLayer. W represents a linear projection layer if not mentioned specially.

Table 1: Comparison between the video features.

Name Type Architecture Pretrained Data Dimension

I3D [8] 3D CNN Kinetics-400 [8] 1024
ResNeXt-101 [9] 2D CNN ImageNet [12] 2048

irCSN [10] 3D CNN IG-65M [13] 2048
Swin-Transformers [11] 2D Transformer ImageNet [12] 1536

CLIP ViT-B/32 [7] 2D Transformer WebImageText [7] 512

Text Encoder is proposed to encode sentences into textual representations. We use a learnable
embedding matrix to generate word embeddings T e = {te1, ..., teLt

}, T e ∈ RLt×512. Then, we add
positional embeddings and type embeddings to T e. Similar with the video encoder, we encode text
embeddings with a one-layer transformer encoder and get the final textual representations T r, which
is calculated as follows:

T r = TransformerEncoderLayer(T e +TE(1) + PE, θt) (3)

where PE denotes Positional Embedding as in [14], and θt represents the parameters of
TransformerEncoderLayer(·).
Concept Encoder has the same architecture as the Text Encoder, and shares the same word embedding
layer. We name the objects appearing in the video and the actions performed in the video as video
concepts, which deliver important information of the video content. We first automatically generate
video-concept pairs based on the video captioning dataset, by extracting nouns and verbs from
captions. Then, we train an LSTM model to predict concepts based on the video content. After

27168=1024+2048+2048+1536+512
3We find adding the positional embedding performs slightly worse in our experiments.
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training, we employ the LSTM model as an off-the-shelf concept extractor to predict concepts for the
video and treat them as an additional input to the model. The predicted concepts are then fed into the
concept encoder to get conceptual representations denoted as Cr.

Multimodal Transformer is proposed to encode representations in different modalities and explore
the interaction between each other. It consists of four transformer encoding layers. Formally, we
concatenate visual, conceptual and textual representations as the input sequence of Multimodal
Transformer as follows:

H0 = [V r;Cr;T r] (4)
Hi = TransformerEncoderLayer(Hi−1, θi), 0 < i <= 4 (5)

Suppose the output of the last layer is denoted as H4 = [hv
1, ..., h

v
Lv

, hc
1, ...h

c
Lc
, ht

1, ...h
t
Lt
], H4 ∈

R(Lv+Lc+Lt)×512, we only use the textual hidden state Ht = [ht
1, ...h

t
Lt
] ∈ RLt×512 in the following

Video-guided Masked Language Modeling task.

Pretraining Task. The task we use in the pretraining stage is called Video-guided Masked Language
Modeling (VMLM). As shown in Figure 1, VMLM aims to predict the masked caption words based
on both the video content and sentence context. We randomly choose 15% of words for prediction. If
a word is chosen, we replace it with (1) the special word [MASK] 80% of the time, (2) a random
token in the vocabulary 10% of the time, and (3) keeping unchanged 10% of the time following
BERT [15]. The hidden state from the Multimodal Transformer is fed to an MLP layer to predict the
original word. We train the VMLM task with the cross-entropy loss as follows:

Lvmlm =
1

N

∑
tmi =[MASK]

log p(ti|V,C, Tm
\i ) (6)

where T = [t1, ..., tLt ] refers to the original sequence. Tm = [tm1 , ..., tmLt
] refers to the masked

sequence, and N refer to the number of masked words.

Finetuning and Inference. Different from the architecture in [16], which uses a decoder to generate
the sequence, we generate the caption based on the same transformer encoder following the strategy
in [17]. We finetune the model with a variant of the VMLM task, which constrains the self-attention
mask to avoid the model seeing the future words. During inference, we first encode the video,
concepts, and special start token [SOS] as input. Then a [MASK] token is input and the model starts
to predict the first word. Once a word is predicted, the [MASK] token is replaced with the predicted
word, and a new [MASK] token is input to model for predicting the next word. We generate the
caption in this manner auto-regressively until the special end token [EOS] is predicted.

We further improve the model by reinforcement learning (RL) with CIDEr [18] reward to address the
exposure bias and target mismatch problems [19]. The RL Loss is defined as:

Lrl = − 1

Ls
r(T s)

Ls∑
i=1

log p(T s
i |V,C, T s

<i) (7)

where T s is the sequence generated by the model during training using the inference strategy described
above, and r(·) denotes CIDEr [18] score.

Hybrid Reranking. Considering that the captions generated by different models can be complemen-
tary, we train three types of models in total: LSTM-based BUTD, PTM, and CE-PTM. We late fuse
the outputs of these models with a hybrid reranking. We train an off-the-shelf video-text matching
model based on VSE++ [20] to evaluate the visual relevance of the generated captions. We treat the
visual relevance matching scores between the generated captions and videos as the confidence scores
of our system. Then we rerank the captions generated from the three types of models by the confident
scores and choose the best description for each video.

1.2 Experiments

We employ the TGIF [21], MSRVTT [22], VATEX [23] and TRECVID VTT 2016-2019 video
captioning datasets as the training set, and TRECVID VTT 2020 as the validation set. To verify the
effectiveness of the proposed model, we conduct experiments to compare performances between
TOP1-in-2020 [3], BUTD [24], our Pretraining-based Transformer Model (PTM), and Concept

3



Enhanced Pretraining-based Transformer Model (CE-PTM). Note that we denote the model without
Concept Encoder as PTM, which does not use concepts as input.

Table 2 shows the captioning results of different models. Note that TOP1-in-2020 uses the same
architecture of BUTD, but it encodes videos with ResNext-101 and irCSN only [3]. The comparison
between TOP1-in-2020 and BUTD shows that adding different kinds of features brings improvement.
Our PTM model is shown to achieve significantly higher scores on all the metrics compared with
BUTD. Although the work in [3] shows that vanilla transformer architecture is inferior to LSTM
models when generating short video descriptions, we demonstrate that with our pre-training strategy,
the transformer model could perform better. Comparison between PTM and CE-PTM shows that
introducing concepts into the model brings limited improvement to the single model performance.
However, adding the captions generated by CE-PTM in the hybrid reranking stage could bring more
performance gains, which demonstrates that the automatically predicted concepts help the model to
generate more diverse captions and they are complementary to the classic captioning models.

Table 2: Models performances on TRECVID VTT 2020 dataset. Note that PTM and CE-PTM is
pre-trained from-scratch using the same dataset with BUTD.

Models BLEU@4 METEOR CIDEr SPICE

Trained with Cross-Entropy

TOP1-in-2020 [3] 16.7 16.9 26.1 10.6
BUTD [24] 18.4 17.4 29.5 11.3
Ours PTM 19.7 18.4 33.8 12.3
Ours CE-PTM 19.6 18.8 34.5 12.7

Trained with Reinforcement Learning

TOP1-in-2020 [3] 17.4 16.9 28.3 10.6
BUTD [24] 19.4 17.9 31.7 11.4
Ours PTM 21.3 18.8 35.4 12.7
Ours CE-PTM 21.4 19 35.8 12.7

Hybrid reranking

BUTD [24] 20.2 18.5 34.7 12.2
PTM 21.4 19.0 37.1 13.0
PTM+CE-PTM 21.6 19.3 38.1 13.3
BUTD+PTM+CE-PTM 21.5 19.3 38.5 13.4

Finally, we submit four runs as follows, and their final evaluation results on TRECVID VTT 2021
dataset are shown in Table 3. Our system ranks 1st place on METEOR, CIDEr, SPICE, and STS
metrics and 2nd place on BLEU4.

• Run 4: Our single best model.

• Run 3: Ensemble of the BUTD models.

• Run 2: Ensemble of the PTM and CE-PTM models.

• Run 1: Ensemble of run2 and run3 by captions reranking.

Table 3: Results of the submitted four runs on TRECVID VTT 2021 dataset.

Runs BLEU@4 METEOR CIDEr SPICE STS

4 3.9 31.6 33.6 11.9 44.1
3 3.7 31.1 32.4 11.6 44.2
2 4.7 32.7 35.9 12.7 45.7
1 4.6 32.5 36.0 12.6 45.6
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2 Fill-in-the-Blanks

2.1 Approach

As described in [25], the Fill-in-the-Blanks subtask requires the model to complete the video descrip-
tion with a blank based on the video content. Since no training data is provided in this challenge, we
automatically build pseudo (video, caption with blank) pairs based on video captioning datasets as
mentioned in the Description Generation subtask. Note that a blank represents a single concept but
not necessarily a single word. We extract verb and noun phrases with article, adjective, adverb, and
preposition in a caption to form blanks. Since the PTM model described in the Description Generation
subtask can recover the masked words, we consider using PTM as well for the Fill-in-the-Blanks
subtask. Specifically, we propose four approaches to generate the blank phrases based on PTM,
including Non-autoregressive Mask Generation (NMG), Auto-regressive Mask Generation (AMG),
LSTM Decoder Generation (LDG), and Transformer Decoder Generation (TDG). The illustrations of
these approaches are shown in Figure 2.

A man is jumping off a mountain using ___________ in a sunny day.

(a) NMG (b) AMG

(c) LDG (d) TDG

Figure 2: The illustrations of blank generation approaches proposed in this report.

Non-autoregressive Mask Generation (NMG). As shown in Figure 2(a), in NMG, the blank in a
caption is treated as successive [MASK] tokens and finetune the PTM with the pseudo pairs using
VMLM objective. We find that the pseudo blanks are usually shorter than 3 words. Therefore, we feed
1-3 successive [MASK] tokens and generate three phrases with the length of 1, 2, and 3 respectively.
We perform mean pooling to aggregate the word-level confident scores into a blank-level one for
each prediction. The most confident prediction is treated as the final prediction.

Auto-regressive Mask Generation (AMG). In NMG, the multiple words in the blank are simultane-
ously predicted without intra-context. To exploit the intra-context in the blank, we propose AMG
that generates the blank phrase in an auto-regressive manner similar to the description generation
strategy described in Section 1. The process of AMG is illustrated in Figure 2(b). Different from
generating video captions that only need the previous information to generate the current word, the
context information before the blank is also critical for the Fill-in-the-Blanks task. The current
word generation in the blank depends on (1) context words before the blank (2) the words in the
blank before the current position and (3) context words after the blank, without the words after the
current position in the blank. Therefore, if we constrain the attention mask of the current word as in
Section 1, the positional embeddings of the context words behind after blank will disclose the length
information of the blank implicitly. To address this problem, we do not constrain the attention mask
anymore, and just remove the words in the blank after the current position. More precisely, in the
fine-tuning stage, we feed a random prefix of the pseudo blank appended with a [MASK] token into
the context words as the input of the model. The model is then asked to predict the masked word.
During inference, we replace the blank with a special start token [BOB] and a [MASK] token to
generate the first blanked word. Once a word is predicted, the [MASK] token in the blank is replaced
by the predicted word, and a new [MASK] is appended to generate the next word until the special
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end token [EOB] is generated. Note that once we append an [MASK] in the blank, the positional
embeddings of the context words behind the blank need to add one during inference.

LSTM Decoder Generation (LDG). The NMG and AMG approaches both directly predict the blank
solely based on the PTM encoder. Considering that the blanks are phrases with variable lengths, we
further explore using LSTM as an additional decoder to generate the blank phrase. As shown in
Figure 2(c), we replace the blank with one [MASK] token and feed its hidden state h[MASK] from the
PTM encoder into an LSTM model as the initial hidden state.

We train the LSTM to generate blank phrase with the cross entropy loss as follows:

h0 = h[MASK] (8)
hi = LSTM(yi−1, hi−1; θl) (9)

p(yi|y<i) = softmax(hiW
T
ld) (10)

Lxe = − 1

Nb

Nb∑
i=0

log p(yi|y<i) (11)

where yi is the i-th word embedding of the blank phrase, θl denotes all the parameters of LSTM, WT
ld

is the logit matrix and Nb is the length of the blank phrase.

Transformer Decoder Generation (TDG). Besides the LSTM Decoder, we also explore to generate
blank phrases with Transformer Decoder [14]. Similar to the LDG, TDG also replace the blank phrase
with one [MASK] token as shown in Figure 2(d). The whole textual hidden states Ht = [ht

1, ...h
t
Lt
]

of the PTM are fed to the Transformer Decoder as the prediction context:

Yi = TransformerDecoderLayer(Yi−1, Ht, Ht, θi) (12)

where Yi, i >= 1 denotes the output of the i-th decoder layer and Y0 = [y1, ..., yNb
] denotes the

word embeddings of the blank. θi denotes the parameters of the i-th decoder layer. There are 4 layers
in our Transformer Decoder in total. We train the whole model with cross entropy loss as follows:

p(yi|y<i) = softmax(Y4W
T
tfd) (13)

Lxe = − 1

Nb

Nb∑
i=0

log p(yi|y<i) (14)

Considering that the PTM encoder is pre-trained while the Transformer Decoder is optimized from
scratch, we further explore to pre-train the Transformer Decoder with PTM for better performance.
Specifically, we pre-train the Transformer Decoder with a Random Blank Filling (RBF) task. We
randomly select 1-5 words in the caption and replace them with a [MASK] token as a blank. The
model is asked to predict the blank phrase through the above-mentioned approach. After pre-training,
we fine-tune the whole model on our pseudo-blank pairs.

Hybrid Reranking. We also adopt the Hybrid Reranking strategy in the Fill-in-the-Blanks subtask.
In addition to calculating the visually related score between video and the completed sentence, we
also employ a pre-trained language model such as RoBERTa [26] to evaluate the language fluency
score of our completed caption. The final reranking score is the weighted sum of visually related
score and language fluency score.

2.2 Experiments

We conduct experiments to evaluate the above methods on the validation set generated based on
TRECVID 2020 video captioning dataset. We use the following two metrics to evaluate the fill-in-
the-blanks result:

• Exactly Match (EM): the prediction of the model is considered correct only if it is exactly
the same with original words.
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Table 4: Pseudo validation on TRECVID VTT 2020.

Model EM F1

Single Model

NMG 19.4 39.5
AMG 21.5 40.8
LDG 28.5 45.0
TDG 28.9 45.1
TDG+RBF 29.1 45.8

Hybrid reranking

All models 30.3 47.0

Table 5: Evaluation results on TRECVID VTT 2021.

System
Automatic Metrics Human Evaluation
EM F1 Average Average Z

human - - 85.4 42.0

Run2 14.1 38.7 80.1 17.3
Run1 15.3 40.8 79.5 13.0

• F1 Score: calculating the Precision and Recall between the prediction and blank phrase at
word-level, then calculating the F1 score as follows:

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

(17)

where TP represents the number of words in both the prediction and blank phrase, FP
represents the number of words only in the prediction and FN represents the number of
words only in the blank phrase.

The results are shown in Table 4. The decoder-based generation methods (LDG, TDG) perform
significantly better than those without additional decoders (NMG, AMG). Although the pseudo blanks
are usually very short, the Transformer Decoder performs slightly better than the LSTM Decoder.
Additionally, pretraining the decoder with the RBF task brings improvements.

Our final submission contains two runs as follows, and their final evaluation results on the TRECVID
VTT 2021 dataset are shown in Table 5.

• Run 2: The single best model with Transformer Decoder (TDG+RBF).
• Run 1: Ensemble of all generation methods mentioned above via Hybrid Reranking.

As shown in Table 5, there is a gap between Automatic Metrics and Human Evaluation. Similar to
the validation results, Run1 performs better on two Automatic Metrics, while Run2 has better Human
Evaluation scores. It suggests that Exactly Match and F1 Score are not perfect evaluation metrics due
to the diversity of blank phrases. Finally, our system ranked 1st on Human Evaluation.

3 Conclusions

In this report, we present our systems for the two subtasks of Video to Text Description (VTT)
in the TRECVID 2021 challenge. For the Description Generation subtask, we build a Concept
Enhanced Pretraining-based Transformer Model (CE-PTM) and finetune it with the same architecture
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to generate video descriptions. Hybrid reranking is employed to ensemble different models according
to the visual relevancy of generated descriptions. For the Fill-in-the-Blanks subtask, we propose
4 generation methods based on the PTM pre-trained in the Description Generation subtask. Our
system finally achieves the best results on METEOR, CIDEr, SPICE, and STS metrics for Description
Generation subtask, and the best performance on Human Evaluation for Fill-in-the-Blanks subtask in
the TRECVID 2021 challenge.
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