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Abstract

Activity detection has wide-reaching applications in video surveillance, sports, and
behavior analysis. The existing literature in activity detection has mainly focused
on benchmarks like AVA, AVA-Kinetics, UCF101-24, and JHMDB-21. However,
these datasets fail to address all issues of real-world surveillance camera videos
like untrimmed nature, tiny actor bounding boxes, multi-label nature of the actions,
etc. In this work, we propose a real-time, online, action detection system which
can generalize robustly on any unknown facility surveillance videos. Our real-time
system mainly consists of tracklet generation, tracklet activity classification, and
prediction refinement using the proposed post-processing algorithm. We tackle the
challenging nature of action classification problem in various aspects like handling
the class-imbalance training using PLM method and learning multi-label action
correlations using LSEP loss. In order to improve the computational efficiency
of the system, we utilize knowledge distillation. Our approach gets second place
in TRECVID 2021 ActEV challenge. Project Webpage: www.crcv.ucf.edu/
research/projects/gabriellav2/

1 Introduction

The problem of video understanding has wide-reaching applications like action recognition [1–8],
action detection [9–13], temporal action localization [14, 15], and video synthesis [16, 17].

The task of spatio-temporal activity localization involves detecting the actions present in the videos,
and generating a spatial bounding box that tracks the activities over time. The main two problem
statements involving videos are: Can we recognize the action in the video? and If so, can we say
where the activity is happening? The first problem is termed as video classification, which involves
labeling single or multiple simultaneous activities present in a video. The second problem targets
annotating where the activity is happening. This is referred as the task of spatio-temporal activity
localization.

The majority of works [18–22] on action detection focus on benchmark datasets like AVA [23], AVA-
Kinetics [24], UCF101-24 [25] or J-HMDB [26]. These approaches are not suitable for real-world
surveillance video due to several reasons: (1) actor size of the surveillance camera is tiny compared
to the actor-centric videos of the benchmarks, (2) surveillance videos are untrimmed, unlike the 3
second trimmed videos of AVA [23] and AVA-Kinetics [24], and (3) real-time and online approach is
required for the video surveillance.

Prior works [10, 13, 27–35] present approaches for action detection in surveillance video. One of the
best performing systems from the prior works is our prior system, Gabriella [10], which is a real-time,
online, action detection approach. Gabriella adopts an end-to-end approach by first detecting the
action proposal using a pixel-wise localization module which is followed by action classification and
post-processing. Although this system outperforms most of the concurrent systems, it has two main
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limitations: (1) it merges overlapping actor bounding boxes, which results in huge regions for indoor
scene and degrades performance of action classification stage, and (2) localization network does not
generalize well on the unknown scene/facility camera, which results in a high probability of missing
actions.

In this work, we build upon our previous system, Gabriella [10], to improve the system overall
performance and generalization capability in unknown facility cameras. Firstly, in order to avoid
merging in crowded scenes we replace the pixel-wise localization network with the object detector
and tracker to get actor-centric trackelets. Secondly, we strengthen the action classification unit
by utilizing state-of-the-art multi-label class-imbalance training, partial label masking (PLM), and
learning class-correlation through log-sum-exp pairwise (LSEP) loss. We also utilize knowledge
distillation to make the action classification component more computationally efficient. Our system
places second in VIRAT TRECVID ActEV 2021 challenge.

2 Related Works

Spatio-Temporal Activity Localization: The task of recognizing and localizing actions across
frames in videos is termed as spatio-temporal activity localization. Primitive works took inspiration
from images and 2D models and extended such approaches to frames. With the introduction of 3D
convolutions, most of the works shifted from 2D-CNN backbones [36–38] to 3D-CNN [39–41].
The main limitation of the prior works is that they have been trained and tested mostly on trimmed
datasets such as UCF101-24 [42], JHMDB-21 [26] or AVA [23]. In the real-world, we deal with
untrimmed videos. In the literature, only a few large-scale datasets have been created to tackle this
problem [43–45]. ActEV UF-Full and TrecVID utilize the MEVA dataset and VIRAT [46] datasets
respectively to develop more works on untrimmed videos for the spatio-temporal localization task.
What makes these datasets challenging, is the average length of videos, which is 20 to 30 times that
of previously proposed datasets. The mains problem solved on untrimmed datasets is to approximate
where the activity is happening in the temporal dimension and detect the type of action being localized.
Also, the solutions are not always real-time, which is a critical aspect for security surveillance videos.
In our work, we develop a real-time spatio-temporal localization framework to detect actions in these
long untrimmed videos.

Post-processing: In general, raw output of object detection algorithm can’t be used as a finalized
localization map. It contains a lot of false positives indicating multiple instances of a single object.
These multiple instances needs to be suppressed to generate a single instance per object detected.
There have been works [47–49] to tackle this issue utilizing Non-Maximum threshold in parallel
to object detection approaches. T-CNN [50] imposes high confidence score based on contextual
information. [47], [48] and [49] uses temporal overlap scores of bounding box across frames. This
approaches are mostly limited to ImageNetVID [51] dataset. Since, most of the datasets are trimmed,
the problem of false alarms have mostly been looked over spatially across frames. On the other hand,
in an untrimmed video, multiple actions have an abrupt starting and ending time. Thus, we extend
these approaches to spatio-temporal dimension. We target multiple detection on a frame (spatially),
and, extend those detections across multiple frames (temporal) suppressing the false alarm detections.
However, we use tracking ids of proposals instead of object detections per frame. We also monitor
the classification score of detections over time. This procedure not only helps us to link detections
efficiently, it also suppresses the contrastive fine-grained activities such as person standing up versus
person sitting down.

3 Method

3.1 Overview

The proposed system takes in a video clip as input and detects all activities in the form of tracklets.
The system first operates on entire clip to spatio-temporally localize actor tracklets. Once we extract
potential tracklets, our classification system identifies all possible activities occurring within each
tracklet. These action predictions are then fed into our TMAS system, which simultaneously filters
and combines them into accurate and consistent action tubes. As an end result, we obtain spatio-
temporal action detections over long untrimmed videos in an online real-time process. The following
sections describe the different components of our system.
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Figure 1: Schematic Diagram for UCF DIVA system: Firstly, an untrimmed video is divided into
fixed temporal sized clips, which are then passed to the object detector to detect the actors frame-wise.
The actor bounding boxes in different frames of the clip are then joined using a tracker to get tracklets.
The action classifier predicts actions classes on each tracklet, which are then post-processed through
the proposed post-processing algorithm.

3.2 Tracklet Generation

Tracklet Identification To identify tracklets in a clip, we first send every fourth frame in that clip
to an object detector. The object detector gives a pixelwise probability mask which is thresholded
into a binary mask, with positive regions connected into objects using connected component analysis,
and the resulting components coverted into bounding boxes. These candidate object bounding boxes
are sent through a background subtractor which filters out objects which are sufficiently stationary.
This is fine because we only care about objects which are performing an action. Finally, these filtered
bounding boxes are sent to an object tracker which assigns an object id to each detection such that
the same object gets the same id in subsequent frames. Then, for each object id, all corresponding
bounding boxes are merged into the smallest-bounding bounding box. The cuboid defined by this
merged bounding box that spans the entire clip temporally, along with the associated object id is a
tracklet.

Tracklet Extraction To extract a tracklet, we crop the clip according to the tracklet’s cuboid, and
linearly interpolate that crop into a consistent resolution for our classifier. This cropped and resized
clip with the associated object id is an extracted tracklet.

3.3 Tracklet Classification

The next step in our proposed system is tracklet classification. Our action classification network is a
multi-label prediction network, which classifies the actions present within each tracklet. We treat this
as a multi-label classification problem because actors can perform multiple activities simultaneously.
For example, an actor can perform the actions Riding and activity_carrying at the same time. We use
a 3D-Convolution based deep learning model [1] initialized with pre-trained weights on Kinetics [52]
dataset for action classification. We modify the final layer of the model to have a C + 1 dimensional
output, where C is the number of action classes and the additional output is for the background class.
A sigmoid activation is used in the final layer in place of a softmax as this is a multi-label classifier.
We use BCE loss to train the classifier which is defined as,

Lcls(ŷ, y) = −
1

C + 1

C∑
i=0

[yilog(ŷi) + (1− yi)log(1− ŷi)] (1)
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where ŷi is the prediction and yi is the ground truth label.

3.4 TMAS Algorithm

To merge the tracklets and obtain the final action tubes, we propose the tracklet-Merge Action-Split
algorithm (TMAS). Each tracklet ti is described as follows:

(
f i
1, f

i
2,bi, aic

)
where f i

1 is the start time,
f i
2 is the end time, bi are the bounding boxes for each frame of the tracklet, and aic are the frame-level

action probability scores for each action class c ∈ {0, 1, ...C}, where 0 is background. First, we
merge the tracklets into action-agnostic tubes of varying length; then we split these action-agnostic
tubes into a set of action-specific tubes which contain the spatio-temporal localizations for the various
activities in the video.

Algorithm 1 The Tubelet-Merge algorithm which merges tracklets into action-agnostic tubes. The
CHECKEND function determines if a candidate tube becomes a final tube or is merged with another
candidate.

Input: A stream of tracklets, S, from the classifier
Output: A set of action-agnostic spatio-temporal tubes, Tdone

Notation: Intertemp calculates temporal overlap between tracklets.
|M[(tc, ∗)]| returns the cardinality of the set {t : M[(tc, t)] > 0}.

1: procedure TUBELET-MERGE(S)
2: Tprev, Tdone ← {} ▷ Initialize candidate and final tubes
3: M← initialize hash table
4: while tc in S do ▷ Continue until the stream of tracklets ends
5: for all tp in Tprev do
6: if Intertemp(tp, tc) > 0 then
7: M[(tp, tc)]← IoU(tp, tc)
8: else
9: CHECKEND(tp, Tprev , M)

10: append tc to Tprev ▷ Tubelet becomes a candidate tube
11: while Tprev is not empty do ▷ Deals with remaining candidates
12: tp ← Tprev[0]
13: CHECKEND(tp, Tprev , M)
14: return Tdone

1: function CHECKEND(tp, Tprev,M)
2: if |M[(tp, ∗)]| == 0 then
3: MOVE(tp, Tprev , Tdone) ▷ Moves tp from Tprev to Tdone

4: else if |M[(tp, ∗)]| == 1 then
5: ti ← maxti M[(tp, ti)]
6: if |M[(∗, ti)]| == 1 then
7: MERGE(tp, ti, Tprev , M)
8: else
9: MOVE(tp, Tprev , Tdone)

10: else
11: ti ← maxti M[(tp, ti)]
12: MERGE(tp, ti, Tprev , M)

1: function MERGE(t1, t2, Tprev,M) ▷ Merges two candidate tubes
2: t1 ← (f1

1 , f
2
2 , {b1, b2}, {a1, a2}) ▷ {} is concatenation

3: remove t2 from Tprev

4: M[t1, ti]← M[t2, ti] ▷ Done for all ti where M[t2, ti] ≥ 0

Tracklet-Merge The procedure to merge tracklets into action-agnostic tubes is described in Algo-
rithm 1. The temporally sequential stream of tracklets coming from the classification network are
passed to the Tubelet-Merge procedure as input. The set of candidate tubes is initialized with the
first tracklet. For each subsequent tracklet, we look for spatio-temporal overlap with the existing
candidate tubes. This results in four possible outcomes: 1) If there is no overlap, the tracklet itself
becomes a new candidate tube, 2) If there is a unique match found between a candidate tube and
the tracklet, they are merged and become a new candidate tube, 3) if the tublet has an overlap with
multiple candidates, then the tracklet becomes a new candidate, 4) if multiple tublets have an overlap
with a single candidate tube, then the tracklet with the highest overlap is merged with that candidate
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Algorithm 2 The Action-Split algorithm which converts the action-agnostic tubes into action-specific
predictions.

Input: A set of action-agnostic tubes, T , and a set of actions, C
Output: A set of spatio-temporal action-specific tubes, AG

Notation: The hyperparameters τ, α, β, and γ are described in the
supplementary materials. ai

c[f ] and ti[f ] contain the action prediction scores and tube information at
frame f , respectively.
1: procedure ACTION-SPLIT(T )
2: AG ← {} ▷ Initializes the action-specific tubes
3: for all ti in T do
4: tsmooth ← SMOOTH(ti)
5: for all c in 1 : C do ▷ Loop through each action class
6: aL ← EXTRACT(tsmooth, c)
7: append aL to AG

8: return AG

1: function SMOOTH(ti)
2: for all f in f i

1 : f i
2 do

3: ai
c [f ]← 1

2τ+1

∑τ
k=−τ a

i
c [f + k]

4: return ti

1: function EXTRACT(ti, c) ▷ Extracts tubes of a specific class
2: AL, al ← {} ▷ Initialize extracted action tubes and a placeholder
3: count← 0
4: for all f in f i

1 : f i
2 do

5: if ai
c[f ] > α then ▷ Continue current action tube

6: append ti[f ] to al

7: count← 0
8: else
9: count← count+ 1

10: if count > β then ▷ Current action tube is finished
11: append al to AL

12: al ← {}, count← 0

13: remove tubes shorter than γ from AL

14: return AL

and the other tracklets become separate candidate tubes. Once all tracklets are checked, the candidate
tubes become the final action-agnostic tubes.

Action-Split From the action-agnostic tubes we obtain action-specific spatio-temporal localizations
using the Action-Split procedure described in Algorithm 2. We start by smoothing out per-frame
action confidence scores; which accounts for fragmentation caused by action miss-classifications.
Then we build the action-specific tubes by checking for continuous occurrences of each action class;
this allows several occurrences of the same activity to occur within a single tube. For instance, a
person walking might stop and stand for several seconds and start walking again; this entire sequence
will be contained in a single spatio-temporal tube, but the Action-Split procedure will correctly
generate two separate instances of activity_walking and one instance of activity_standing. To be
robust to classification errors, action tubes with the same action label that are within a limited temporal
neighborhood are combined together to form a single continuous action prediction.

Runtime Complexity The worst-case runtime of our TMAS algorithm is O
(
n2

)
, where n is the

total number of candidate tubes at any given time. However, we sequentially process our tracklets
and constantly shift the candidate tubes which can not have any possible future match to the set of
final tubes. Therefore, the set of candidate tubes at any particular time is reasonably small and our
TMAS algorithm contributes negligible overhead to our system’s overall computation time.

4 Experiments

Classification Network: We experiment with multiple classification models to determine the best
network architecture for our system. For a fair comparison, all models are initialized with pre-

5



trained weights on the Kinetics [52] and are trained with the same settings. A comparison of their
performance on the VIRAT validation set is shown in Table 1. We use the average F1-Score as a
metric for comparison and observe that R(2+1)D model [53] outperforms the other models.

Architecture Precision Recall F1-Score
I3D [54] 0.36 0.31 0.33
P3D [55] 0.43 0.41 0.41
3D-ResNet [1] 0.46 0.43 0.44
R(2+1)D [53] 0.50 0.43 0.45

Table 1: Ablation experiments for different classification network architectures. Precision, Recall,
and F1-scores are averaged over all classes on the VIRAT validation set.

Rank team_name team_abbrev nAUDC@tfa0.2 p_miss@tfa0.15

1 BUPT-MCPRL BUPT-MC_26542 0.4085 0.3249
2 UCF UCF_26546 0.4306 0.3408
3 INF INF_26532 0.4444 0.3508
4 M4D_2021 M4D_202_26467 0.8466 0.7941
5 TokyoTech_AIST TOKYOTE_26508 0.8516 0.8197
6 Team UEC TEAMUE_26530 0.9640 0.9503

Table 2: Official results for TRECVID 2021 ActEV challenge. Best and second best scores are
highlighted.

4.1 Comparison with other teams

As shown in Table 2, we placed second in the competition overall with an nAUDC of 0.4306 and a
pmiss of 0.3408, lagging behind first by only 0.0221 and 0.0159 respectively.
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