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Abstract. The Waseda Meisei SoftBank team participated in the TRECVID

2021 ad-hoc video search (AVS) task. This year, as last year, we submitted

manually assisted and fully automatic runs for both the main task and the

progress subtask. Our approach consisted of concept-based video retrieval and

visual-semantic embedding. We used a visual-semantic embedding approach for

the fully automatic runs and a fusion of both concept-based and visual-semantic

embedding approaches for the manually assisted runs. Our best fully automatic

run for the main task achieved a mean average precision (mAP) of 34.1%, which

ranked fourth among all participants. Our best manually assisted run for the

main task achieved an mAP of 33.1%, which ranked second among all manually

assisted systems.

1 System Description

We submitted both fully automatic and manually assisted systems to the Text Retrieval

Conference Video Retrieval Evaluation (TRECVID) 2021 ad-hoc video search (AVS)

task [1]. This section introduces how both systems were created.

1.1 Fully Automatic Systems

The fully-automatic systems were created by integrating various visual-semantic em-

bedding approaches. Last year, the systems were developed using only improved visual-

semantic embeddings (VSE++) [2] as the embedding method. This year, recently

proposed embedding methods were introduced, such as a graph-structured matching

network (GSMN) [3], contrastive language-image pre-training (CLIP) [4], and object-

semantics aligned pre-training (Oscar) [5].

VSE++ can extract global representations of images and text, but cannot deter-

mine the relationship between objects in an image and words in a sentence. Therefore,

we introduced a GSMN, which can model objects, relationships, and attributes as

structured phrases through node- and structure-level correspondences. CLIP, proposed

by OpenAI, has become a hot topic in the field of image and text retrieval since the

beginning of 2021. CLIP achieves zero-shot, highly accurate image retrieval without
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fine-tuning by pre-training on a large number of text/image pairs (over 400 million).

Oscar uses object tags detected in the image as anchor points, which greatly improves

the generalizability of the pre-trained models.

For each of the embedding approaches presented above, we computed the scores for

all test video shots. The following three types of video-shot frames were used in each

approach, depending on when the work was done and how fast the calculations were

performed:

– Framek: Use only key frames
– Frame10: Use the middle 10 frames of the video divided into 11 equal parts
– Framee10: Use every 10 frames.

In the following, we explain how each model was created and how the scores for

each video shot were calculated.

1. VSE++

We used the implementation of VSE++5 for training. To train the visual-semantic

embedding, four image-caption datasets, Flickr8k [6], Flickr30k [7], MS-COCO [8],

and Conceptual Captions [9], were used. The total number of image captions was

3,428,009, including 40,000 from Flickr8k, 155,070 from Flickr30k, 423,915 from

MS-COCO, and 2,809,024 from Conceptual Captions6. We used a gated recurrent

unit (GRU) for feature extraction from query sentences and the ResNet-50, ResNet-

101, and ResNet-152 models for feature extraction from images.
Because of the large amount of training data, 500,000 training data pairs and

50,000 validation data pairs were randomly selected to train the visual-semantic

embedding models. We repeated this data-selection process 32 times for each of

the three types of ResNet model, and trained 96 embedding models. For the score

calculation, we obtained 192 different scores for each shot using both Frame10
and Framee10 for the 96 models. After adding all 192 scores, the final scores were

obtained by min-max normalization; that is, the maximum and minimum scores

were 1.0 and 0.0, respectively.

2. GSMN

The visual features of the GSMN were extracted using the bottom-up attention

model7 and the pre-trained bottom-up attention model provided there. The bottom-

up attention model is based on training Faster R-CNN with ResNet-101, using

object and attribute annotations from the Visual Genome [10]. GRU was used to

extract features from the text.
To train the GSMN models, we used the GSMN implementation8 and a total of

3,755,503 image-text pairs, including 40,000 from Flickr8k, 155,070 from Flickr30k,

596,435 from MS-COCO, 2,809,018 from Conceptual Captions, and 154,980 from

MSR-VTT [11]. Because of the large amount of training data, we divided the

training data and created nine models9. For the score calculation, we obtained nine

5 https://github.com/fartashf/vsepp
6 The total amount of data in the Conceptual Captions dataset was 3,334,173, including

3,318,333 training data and 15,840 validation data; however, only 2,809,024 downloadable

data were used.
7 https://github.com/peteanderson80/bottom-up-attention
8 https://github.com/CrossmodalGroup/GSMN
9 The data were divided into ten parts and models were created; however, one of them failed

to be created, so nine models were finally used.

https://github.com/fartashf/vsepp
https://github.com/peteanderson80/bottom-up-attention
https://github.com/CrossmodalGroup/GSMN


3

different scores for each shot using only Framee10. The final scores were calculated

by min-max normalization after adding all scores, as in the case of VSE++.

3. CLIP

We did not train the models ourselves, but used the pre-trained models provided in

the CLIP implementation10. We used four types of pre-trained CLIP models: ViT-

B/32, RN50, RN101, and RN50x4. ViT-B/32 is based on a vision-transformer ar-

chitecture. RN50 and RN101 are architectures equivalent to ResNet-50 and ResNet-

101, respectively. RN50x4 is an RN50 scaled up 4××, according to the EfficientNet

scaling rule. For the score calculation, we obtained eight different scores for each

shot by using both Frame10 and Framee10 for the four models. The final scores

were calculated by min-max normalization after adding all the scores, as in the

case of VSE++ and GSMN.

4. Oscar

Similar to CLIP, we did not train any models for Oscar, but used the large pre-

trained Oscar model available on GitHub11. For the score calculation, we obtained

only one score for each shot, using Framek for the large pre-trained Oscar model.

The final scores were calculated in the same manner as for the other embedding

methods.

In this year’s automatic systems, the test data were ranked according to the scores,

which were calculated by simply adding the scores from the four different embedding

methods, multiplied by the fusion weights. The fusion weights were determined manu-

ally by evaluating the 2019 and 2020 TRECVID AVS tasks. This year, we submitted

four fully automatic runs (Automatic1, Automatic2, Automatic3, and Automatic4).

The fusion weights of VSE++, GSMN, CLIP, and Oscar used in our systems are as

follows:

– Automatic1: 5 : 5 : 10 : 1

– Automatic2: 3 : 3 : 10 : 1

– Automatic3: 7 : 7 : 10 : 1

– Automatic4: 10 : 10 : 10 : 1.

The reason for the high fusion weights of the CLIP models is that VSE++ and

GSMN use models that were trained using the same training data (Flickr8k, Flickr30k,

MS-COCO, and Conceptual Captions), whereas CLIP uses a model that was trained

on 400 million pairs, which is different from the training data used for VSE++ and

GSMN. In Oscar, the fusion ratio was set to low because only one model was used, and

the score was calculated on only one keyframe, Framek, from each video.

1.2 Manually Assisted Systems

The manually assisted systems were created by combining the concept-based method

and the visual-semantic embedding methods, because we found, from the results of

the past few years, that the concept-based and visual-semantic embedding approaches

10 https://github.com/openai/CLIP
11 https://github.com/microsoft/Oscar/blob/master/MODEL_ZOO.md#

Image-Text-Retrieval

https://github.com/openai/CLIP
https://github.com/microsoft/Oscar/blob/master/MODEL_ZOO.md##Image-Text-Retrieval
https://github.com/microsoft/Oscar/blob/master/MODEL_ZOO.md##Image-Text-Retrieval
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Table 1. Concept bank used in our systems.

Name Database # Concepts Concept Type(s) Models

TRECVID346 TRECVID SIN [12] 346 Person, Object, Scene, Action GoogLeNet + SVM
FCVID239 FCVID [13] 239 Person, Object, Scene, Action GoogLeNet + SVM
UCF101 UCF101 [14] 101 Action GoogLeNet + SVM
PLACES205 Places [15] 205 Scene AlexNet
PLACES365 Places 365 Scene GoogLeNet
HYBRID1183 Places, ImageNet [16] 1,183 Person, Object, Scene AlexNet
IMAGENET1000 ImageNet 1,000 Person, Object GoogLeNet
IMAGENET4000 ImageNet 4,000 Person, Object GoogLeNet
IMAGENET4437 ImageNet 4,437 Person, Object GoogLeNet
IMAGENET8201 ImageNet 8,201 Person, Object GoogLeNet
IMAGENET12988 ImageNet 12,988 Person, Object GoogLeNet
IMAGENET21841 ImageNet 21,841 Person, Object GoogLeNet
ACTIVITYNET200 ActivityNet [17] 200 Action GoogLeNet + SVM
KINETICS400 Kinetics [18] 400 Action 3D-ResNet
ATTRIBUTES300 Visual Genome [10] 300 Attributes of persons/objects GoogLeNet + SVM
RELATIONSHIPS53 Visual Genome 53 Relationships b/w persons/objects GoogLeNet + SVM
FACES40 CelebA [19] 40 Face Attributes face detector + CNN

are complementary. The visual-semantic embedding methods used in the manually

assisted systems are the same as those used in the fully automatic systems. For the

concept-based approach, we used a large concept bank, comprised of several concept

types, as shown in Table 1. It contains classifiers, such as persons, objects, scenes, and

actions, to support the various forms of query sentences. Using this concept bank, all

concept scores for all videos were calculated. Because the concept bank used this year is

exactly the same as the one used last year, we omit the explanation of how we created

the concept bank and refer to last year’s notebook paper for details [20].

After calculating the concept scores12 for every video sequence in advance, we re-

trieved videos using word-based keyword selection through the following pipeline.

1. Extract one or more keywords from a query sentence.
2. Select one or more concept classifiers related to a keyword. The corresponding

concept may not exist in the concept bank.
3. For each video, calculate the score for the query sentence by integrating the scores

from multiple concept classifiers.

Given a query sentence, we manually selected some visually important keywords.

For example, given the query sentence, “two or more ducks swimming in a pond,”

we selected the keywords “duck,” “swimming,” and “pond.” We then matched the

keywords with concepts, using a concept classifier. Semantically similar concepts were

also chosen using the word2vec algorithm [21] to select as many concept classifiers as

possible. The advantage of the concept-based method is that it can accurately extract

the videos corresponding to words, such as “duck,” “swimming,” and “pond.” However,

it has the disadvantage that phrases like “two or more” and “in a pond” are ignored.

As in the past few years, the visual-semantic embedding and concept-based ap-

proaches were combined to re-rank the video-retrieval result using reciprocal rank fu-

sion (RRF) [22],

RRFscore =
∑
r∈R

1

k + r
, (1)

where R is the set of rankings and k is a fixed parameter.
12 The score for each semantic concept was normalized for all test-shot iterations using a min-

max normalization; that is, the maximum and minimum scores were 1.0 (most probable)

and 0.0 (least probable), respectively.
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2 Submission Results

Fig. 1. Results of all the systems for all teams that submitted to the main task in the 2021

submission, including both fully automatic (red) and manually assisted (blue).

This year, we submitted four fully automatic runs (Automatic1, Automatic2, Au-

tomatic3, and Automatic4) and four manually assisted runs (Manual1, Manual2, Man-

ual3, and Manual4) to both the main task and the progress subtask.

The results for all teams that submitted to the main task are shown in Fig. 1. In

the main task, our best automatic run and manually assisted systems ranked fourth

and second, respectively, among all participating teams.

The results for all the fully automatic and manually assisted systems submitted to

the progress subtask, which continuously evaluates the systems submitted from 2019 to

2021, are shown in Figs. 2 and 3, respectively. Our best fully automatic system came

in second place among all participating teams, and the difference in mean average

precision (mAP) between ours and the system with the highest accuracy was only 1.0

(31.1 vs. 30.1). Our best manually assisted system ranked the highest among all the

manually assisted systems in three years.

Figures 2 and 3 also show a comparison of the accuracy of the systems we submitted

for 2020 and 2021. The main difference between the 2020 and 2021 systems is the

embedding method used. The 2020 systems used only VSE++, while the 2021 systems

additionally introduced the latest embedding methods GSMN, CLIP, and Oscar. From

these differences in accuracy, we can see the progress of embedding methods in the last

few years.

The results of our submitted runs for 2021 are listed in Table 2. First, looking at

the different fusion weights of the fully automatic runs, we can see that the accuracy is

highest when the fusion weight of CLIP is large. This shows that CLIP has a different

output tendency and higher retrieval accuracy than VSE++ and GSMN.

For this year’s manual systems, we decided to integrate concept-based and visual-

semantic embedding approaches, based on the results of the previous year. This is be-
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Fig. 2. Results of all the fully automatic systems for all teams that submitted to the progress

task in the 2019–2021 submissions.

Fig. 3. Results of all the manually assisted systems for all teams that submitted to the progress

task in the 2019–2021 submissions.
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Table 2. Our submitted runs for TRECVID 2021.

Run Fusion weights Fusion weights mAP

name VSE++ GSMN CLIP Oscar embedding concept Main Progress

Automatic1 5 5 10 1 — 32.5 30.0

Automatic2 3 3 10 1 — 34.1 30.1

Automatic3 7 7 10 1 — 30.7 29.1

Automatic4 10 10 10 1 — 28.8 28.0

Manual1 5 5 10 1 3 1 31.5 31.4

Manual2 5 5 10 1 2 1 30.8 31.6

Manual3 3 3 10 1 3 1 33.1 31.8

Manual4 3 3 10 1 2 1 32.2 31.7

cause the concept-based and embedding methods were complementary, and the video-

retrieval accuracy could be improved by integrating them. However, the advantages of

the concept-based approach are diminishing, as embedding methods have been greatly

improved by the introduction of the newly proposed CLIP and other methods. For ex-

ample, for the main task, the embedding method alone was better than the fusion of the

concept-based and embedding methods. On the other hand, for the progress task, the

fusion of the concept-based and embedding methods was better than the embedding

method alone. This shows that the performance depends on the query sentences.

3 Conclusion

In the systems submitted this year, we introduced new embedding methods that have

been proposed in recent years, such as GSMN, CLIP, and Oscar. The evaluation results

showed that the accuracy of the system was significantly better than that of the previ-

ous year’s system, indicating that the recent pre-training mechanism using large-scale

image-text pairs is beneficial.
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