DCU ADAPT at TRECVID 2021

Video Summarization - Keeping It Simple

A. Potyagalova, Gareth J. F. Jones
Overview

- Introduction
- Approach
- Main task
- Subtask
- Results and Conclusions
- Questions
Introduction
Introduction

- **Approach** Main approach to VSUM task detect sub-clips containing selected characters using a neural network:
 - face-detection and keyword search in short clips.
- **Results** Achieves reasonably good result (30.5% accuracy) for main task, but rather poor result for subtask questions (17.2% accuracy).
- **Ways to improve** Handle questions related to individual characters separately; perform more detailed analysis of subscripts. Current voice recognition results were not accurate enough to include them in the final submission.
Approach
Approach
Scheme
Approach

Corpus creation

- Image dataset

Figure 1: Extraction of frames and audio, and preparation for training datasets

Preparation includes standard Keras augmentation for images; and adding minor white noise to audio chunks
Approach
Corpus creation

- **Metadata extraction** Scraping synopses from video metadata and fansites.
 - Idea is that if a character is not mentioned in the episode synopsis, there will be no important events for that character.

- **Keyword storage** Creation of keyword list for detection of major events
 - Idea is that specific keywords can serve as a flag to determine the importance of the episode.
Main task
Main task
Neural network training

Figure 2: Tensorflow-based CNN. Regularization methods from the Keras API were added to solve overfitting problem.
Main task
Detect character

- Character recognition

Figure 3: Detect all faces in video, select 5 listed characters, and extract relevant subclips

- **Subclip Set** Creates a set of subclips containing the selected characters.
Main task
Video processing

Figure 4: Audio track extracted from the clip, speech transcribed using Deep-Speech. Keywords searched in the text file of each clip.
Subtask
Subtask

Keyword lists Separate pool of keywords created for each question.

Search The same search stages used as in a main task.
Results and Conclusions
Results and Conclusions

Results and scores

<table>
<thead>
<tr>
<th>Query</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapt_Archie</td>
<td>50.50%</td>
</tr>
<tr>
<td>Adapt_Jack</td>
<td>19.25%</td>
</tr>
<tr>
<td>Adapt_Max</td>
<td>13%</td>
</tr>
<tr>
<td>Adapt_Peggy</td>
<td>29.75%</td>
</tr>
<tr>
<td>Adapt_Tanya</td>
<td>38.25%</td>
</tr>
</tbody>
</table>
Results and Conclusions

Results and scores

<table>
<thead>
<tr>
<th>Query</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapt_Archie</td>
<td>19.50%</td>
</tr>
<tr>
<td>Adapt_Jack</td>
<td>15.75%</td>
</tr>
<tr>
<td>Adapt_Max</td>
<td>12%</td>
</tr>
<tr>
<td>Adapt_Peggy</td>
<td>12%</td>
</tr>
<tr>
<td>Adapt_Tanya</td>
<td>27%</td>
</tr>
</tbody>
</table>
Results and Conclusions

Future plans

- **Text analysis** Separate handling of questions related to individual characters; perform a more detailed analysis of subscripts.
- **Voice detection** Improve accuracy of voice recognition, current results with SincNet tools are not accurate enough to be useful.
- **GAN** Provide more accurate augmented images by changing angles and lighting.
Questions